2.2.126 Problems 12501 to 12600

Table 2.253: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12501

\[ {}y y^{\prime }+x y^{2} = x \]

[_separable]

1.796

12502

\[ {}\sin \left (y\right ) y^{\prime }+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

40.596

12503

\[ {}4 x y^{\prime }+3 y+{\mathrm e}^{x} x^{4} y^{5} = 0 \]

[_Bernoulli]

1.813

12504

\[ {}y^{\prime }-\frac {1+y}{x +1} = \sqrt {1+y} \]

[[_1st_order, _with_linear_symmetries]]

3.872

12505

\[ {}x^{4} y \left (3 y+2 x y^{\prime }\right )+x^{2} \left (4 y+3 x y^{\prime }\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.250

12506

\[ {}y^{2} \left (3 y-6 x y^{\prime }\right )-x \left (y-2 x y^{\prime }\right ) = 0 \]

[_separable]

1.764

12507

\[ {}2 x^{3} y-y^{2}-\left (2 x^{4}+x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.941

12508

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.862

12509

\[ {}\frac {-y+x y^{\prime }}{\sqrt {x^{2}-y^{2}}} = x y^{\prime } \]

[‘y=_G(x,y’)‘]

2.013

12510

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.776

12511

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.984

12512

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.669

12513

\[ {}-y+x y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.457

12514

\[ {}3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.639

12515

\[ {}2 x +\left (x^{2}+y^{2}+2 y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.224

12516

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.972

12517

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

1.336

12518

\[ {}y^{2}-x^{2}+2 m y x +\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.985

12519

\[ {}x y^{\prime }-y+2 x^{2} y-x^{3} = 0 \]

[_linear]

1.323

12520

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.427

12521

\[ {}x +y y^{\prime }+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.773

12522

\[ {}x y^{\prime }-a y+b y^{2} = c \,x^{2 a} \]

[_rational, _Riccati]

1.973

12523

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

3.111

12524

\[ {}\sqrt {1-y^{2}}+\sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

18.627

12525

\[ {}y^{\prime }-x^{2} y = x^{5} \]

[_linear]

1.957

12526

\[ {}\left (y-x \right )^{2} y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.553

12527

\[ {}x y^{\prime }+y+x^{4} y^{4} {\mathrm e}^{x} = 0 \]

[_Bernoulli]

3.522

12528

\[ {}\left (1-x \right ) y+\left (1-y\right ) x y^{\prime } = 0 \]

[_separable]

1.346

12529

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.516

12530

\[ {}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.031

12531

\[ {}-y+x y^{\prime } = \sqrt {x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

80.707

12532

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.853

12533

\[ {}x -2 y+5+\left (2 x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.333

12534

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

3.441

12535

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

2.288

12536

\[ {}x y^{2} \left (3 y+x y^{\prime }\right )-2 y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5.292

12537

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

1.805

12538

\[ {}5 x y-3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.341

12539

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.178

12540

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.846

12541

\[ {}\left (1-x \right ) y-\left (1+y\right ) x y^{\prime } = 0 \]

[_separable]

1.286

12542

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

[_separable]

2.648

12543

\[ {}\left (y^{2}+x^{2}\right ) \left (x +y y^{\prime }\right ) = \left (x^{2}+y^{2}+x \right ) \left (-y+x y^{\prime }\right ) \]

[_rational]

2.856

12544

\[ {}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.386

12545

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

43.260

12546

\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

1.656

12547

\[ {}\left (y^{2}+x^{2}\right ) \left (x +y y^{\prime }\right )+\sqrt {1+x^{2}+y^{2}}\, \left (y-x y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.580

12548

\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.020

12549

\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \]

[_Bernoulli]

1.997

12550

\[ {}x^{3} y^{4}+x^{2} y^{3}+x y^{2}+y+\left (x^{4} y^{3}-x^{3} y^{2}-x^{3} y+x \right ) y^{\prime } = 0 \]

[_rational]

3.053

12551

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

85.065

12552

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

1.261

12553

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.470

12554

\[ {}y^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

0.545

12555

\[ {}\left (2 x y^{\prime }-y\right )^{2} = 8 x^{3} \]

[_linear]

0.592

12556

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

0.247

12557

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

2.461

12558

\[ {}2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.636

12559

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.264

12560

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.435

12561

\[ {}y^{\prime }+2 x y = y^{2}+x^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.773

12562

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

2.041

12563

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.398

12564

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.137

12565

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.503

12566

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.511

12567

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

7.747

12568

\[ {}\left (-y+x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.609

12569

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 x y^{\prime }-1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.127

12570

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.103

12571

\[ {}{\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \]

[‘y=_G(x,y’)‘]

294.658

12572

\[ {}x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

11.013

12573

\[ {}\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.622

12574

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

105.284

12575

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.505

12576

\[ {}\left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right ) \]

[‘y=_G(x,y’)‘]

79.704

12577

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2} \]

[_quadrature]

4.806

12578

\[ {}y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.533

12579

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class G‘]]

4.806

12580

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.628

12581

\[ {}y = {y^{\prime }}^{2} \left (x +1\right ) \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.756

12582

\[ {}\left (-y+x y^{\prime }\right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \]

[_rational]

118.201

12583

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

[_separable]

1.090

12584

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.611

12585

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

2.599

12586

\[ {}y = x y^{\prime }+\frac {y {y^{\prime }}^{2}}{x^{2}} \]

[[_1st_order, _with_linear_symmetries]]

3.267

12587

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = y^{2} x^{2}+x^{4} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.795

12588

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.455

12589

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.422

12590

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y-2\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _Clairaut]

0.613

12591

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

[_quadrature]

0.578

12592

\[ {}8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3} \]

[[_homogeneous, ‘class C‘], _dAlembert]

30.239

12593

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

0.264

12594

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

12.700

12595

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.819

12596

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.879

12597

\[ {}y^{\prime \prime \prime }-y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.063

12598

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.068

12599

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.070

12600

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.073