2.2.126 Problems 12501 to 12600

Table 2.253: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12501

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (c b +c^{2}+a \right ) x +b +2 c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.466

12502

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.602

12503

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.754

12504

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (c -1\right ) \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.349

12505

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.164

12506

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.053

12507

\[ {}x y^{\prime \prime }+\left (a \,x^{3}+b \right ) y^{\prime }+a \left (b -1\right ) x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.833

12508

\[ {}x y^{\prime \prime }+x \left (a \,x^{2}+b \right ) y^{\prime }+\left (3 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.387

12509

\[ {}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.663

12510

\[ {}x y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.671

12511

\[ {}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime }+\left (d -1\right ) \left (a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.550

12512

\[ {}x y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.903

12513

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+2\right ) y^{\prime }+a \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.948

12514

\[ {}x y^{\prime \prime }+\left (x^{n}+1-n \right ) y^{\prime }+b \,x^{2 n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.710

12515

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a n \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.704

12516

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b -1\right ) x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.128

12517

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (n +b -1\right ) x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.204

12518

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.928

12519

\[ {}x y^{\prime \prime }+\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{2 n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.977

12520

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{2 n -1}+d \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.897

12521

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{n -2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.140

12522

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+a n \,x^{n -1}-b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.814

12523

\[ {}x y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.451

12524

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (c -1\right ) \left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.404

12525

\[ {}x y^{\prime \prime }+\left (a b \,x^{m +n}+a n \,x^{n}+b \,x^{m}+1-2 n \right ) y^{\prime }+a^{2} b n \,x^{2 n +m -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.515

12526

\[ {}\left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.523

12527

\[ {}\left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.400

12528

\[ {}\left (a x +b \right ) y^{\prime \prime }+s \left (c x +d \right ) y^{\prime }-s^{2} \left (\left (a +c \right ) x +b +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.870

12529

\[ {}\left (a_{2} x +b_{2} \right ) y^{\prime \prime }+\left (a_{1} x +b_{1} \right ) y^{\prime }+\left (a_{0} x +b_{0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7.578

12530

\[ {}\left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.436

12531

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

0.724

12532

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.576

12533

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-\left (n +1\right ) n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.826

12534

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+\left (n +1\right ) n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.882

12535

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.711

12536

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.727

12537

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.342

12538

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{4}+a \left (2 b -1\right ) x^{2}+b \left (b +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.771

12539

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.755

12540

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{2 n}+a \left (2 b +n -1\right ) x^{n}+b \left (b -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.382

12541

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.347

12542

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{3 n}+b \,x^{2 n}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.370

12543

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2 n} \left (b \,x^{n}+c \right )^{m}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.562

12544

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

1.645

12545

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.895

12546

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.922

12547

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

0.823

12548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (\nu ^{2}+x^{2}\right ) y = 0 \]

[[_Bessel, _modified]]

0.921

12549

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.951

12550

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.388

12551

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.329

12552

\[ {}x^{2} y^{\prime \prime }+\lambda x y^{\prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.995

12553

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{n}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.947

12554

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+x^{n} \left (b \,x^{n}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.556

12555

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.000

12556

\[ {}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+\left (b \,x^{2}+c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.146

12557

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.586

12558

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.112

12559

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (k \left (a -k \right ) x^{2}+\left (a n +b k -2 k n \right ) x +n \left (-n +b -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.704

12560

\[ {}a_{2} x^{2} y^{\prime \prime }+\left (a_{1} x^{2}+b_{1} x \right ) y^{\prime }+\left (a_{0} x^{2}+b_{0} x +c_{0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.691

12561

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+\left (a b -1\right ) x +b \right ) y^{\prime }+a^{2} b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11.241

12562

\[ {}x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.494

12563

\[ {}x^{2} y^{\prime \prime }+x \left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{3}+B \,x^{2}+C x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.259

12564

\[ {}x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a b \,x^{n}+a c \,x^{n -1}+b^{2} x^{2}+2 b x c +c^{2}-c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.251

12565

\[ {}x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n +2 m}-b^{2} x^{4 m +2}+a m \,x^{n -1}-m^{2}-m \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.319

12566

\[ {}x^{2} y^{\prime \prime }+x \left (a \,x^{n}+b \right ) y^{\prime }+b \left (a \,x^{n}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.020

12567

\[ {}x^{2} y^{\prime \prime }+x \left (a \,x^{n}+b \right ) y^{\prime }+\left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.859

12568

\[ {}x^{2} y^{\prime \prime }+x \left (2 a \,x^{n}+b \right ) y^{\prime }+\left (a^{2} x^{2 n}+a \left (n +b -1\right ) x^{n}+\alpha \,x^{2 m}+\beta \,x^{m}+\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.122

12569

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2+n}+b \,x^{2}+c \right ) y^{\prime }+\left (a n \,x^{n +1}+a c \,x^{n}+c b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.126

12570

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+n \left (n -1\right ) y = 0 \]

[_Gegenbauer]

0.524

12571

\[ {}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+b y^{\prime }-6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.225

12572

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }+a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.997

12573

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+n^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.516

12574

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.945

12575

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\nu \left (\nu +1\right ) y = 0 \]

[_Gegenbauer]

0.939

12576

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-3 x y^{\prime }+n \left (2+n \right ) y = 0 \]

[_Gegenbauer]

1.882

12577

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (\nu +n +1\right ) \left (\nu -n \right ) y = 0 \]

[_Gegenbauer]

1.376

12578

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (\nu -n +1\right ) \left (\nu +n \right ) y = 0 \]

[_Gegenbauer]

1.383

12579

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (2 a +1\right ) y^{\prime }-b \left (2 a +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.214

12580

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (2 a -3\right ) x y^{\prime }+\left (n +1\right ) \left (n +2 a -1\right ) y = 0 \]

[_Gegenbauer]

1.355

12581

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (\beta -\alpha -\left (\alpha +\beta +2\right ) x \right ) y^{\prime }+n \left (n +\alpha +\beta +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.545

12582

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (\alpha -\beta +\left (\alpha +\beta -2\right ) x \right ) y^{\prime }+\left (n +1\right ) \left (n +\alpha +\beta \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.530

12583

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

323.755

12584

\[ {}\left (x^{2}+a \right ) y^{\prime \prime }+2 b x y^{\prime }+2 \left (b -1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.648

12585

\[ {}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

63.664

12586

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.239

12587

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (2 n +1\right ) a x y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

497.694

12588

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\left (2 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.118

12589

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.331

12590

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (c \,x^{2}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{2}+d -b \lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.421

12591

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (\lambda \left (a +c \right ) x^{2}+\left (c -a \right ) x +2 b \lambda \right ) y^{\prime }+\lambda ^{2} \left (c \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.396

12592

\[ {}x \left (-1+x \right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x -\gamma \right ) y^{\prime }+\alpha \beta y = 0 \]

[_Jacobi]

1.557

12593

\[ {}x \left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.388

12594

\[ {}2 x \left (-1+x \right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y = 0 \]

[_Jacobi]

0.729

12595

\[ {}\left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.067

12596

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +k \right ) y^{\prime }+\left (d -2 a \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

37.506

12597

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k x +d \right ) y^{\prime }-k y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.719

12598

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.300

12599

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+3 \left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.589

12600

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime \prime }+\left (b_{1} x +c_{1} \right ) y^{\prime }+c_{0} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.923