2.2.114 Problems 11301 to 11400

Table 2.229: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11301

\[ {}y^{\prime \prime }+2 y y^{\prime }+f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.296

11302

\[ {}y^{\prime \prime }+2 y y^{\prime }+f \left (x \right ) \left (y^{\prime }+y^{2}\right )-g \left (x \right ) = 0 \]

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.094

11303

\[ {}y^{\prime \prime }+3 y y^{\prime }+y^{3}+f \left (x \right ) y-g \left (x \right ) = 0 \]

[NONE]

0.093

11304

\[ {}y^{\prime \prime }+\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+y^{2} f \left (x \right ) = 0 \]

[[_2nd_order, _with_potential_symmetries]]

0.204

11305

\[ {}y^{\prime \prime }-3 y y^{\prime }-3 y^{2} a -4 a^{2} y-b = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3.114

11306

\[ {}y^{\prime \prime }-\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+y^{2} f \left (x \right ) = 0 \]

[[_2nd_order, _with_potential_symmetries]]

0.204

11307

\[ {}y^{\prime \prime }-2 a y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.662

11308

\[ {}y^{\prime \prime }+a y y^{\prime }+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

43.853

11309

\[ {}y^{\prime \prime }+f \left (x , y\right ) y^{\prime }+g \left (x , y\right ) = 0 \]

[NONE]

0.099

11310

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b y = 0 \]

[[_2nd_order, _missing_x]]

1.033

11311

\[ {}y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

0.551

11312

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

0.527

11313

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b \sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

4.592

11314

\[ {}y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

0.504

11315

\[ {}y^{\prime \prime }+a y {y^{\prime }}^{2}+b y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.262

11316

\[ {}y^{\prime \prime }+f \left (y\right ) {y^{\prime }}^{2}+g \left (x \right ) y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.507

11317

\[ {}y^{\prime \prime }-\frac {D\left (f \right )\left (y\right ) {y^{\prime }}^{3}}{f \left (y\right )}+g \left (x \right ) y^{\prime }+h \left (x \right ) f \left (y\right ) = 0 \]

[NONE]

0.164

11318

\[ {}y^{\prime \prime }+\phi \left (y\right ) {y^{\prime }}^{2}+f \left (x \right ) y^{\prime }+g \left (x \right ) \Phi \left (y\right ) = 0 \]

[NONE]

0.161

11319

\[ {}y^{\prime \prime }+f \left (y\right ) {y^{\prime }}^{2}+g \left (y\right ) y^{\prime }+h \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

0.171

11320

\[ {}y^{\prime \prime }+\left (1+{y^{\prime }}^{2}\right ) \left (f \left (x , y\right ) y^{\prime }+g \left (x , y\right )\right ) = 0 \]

[NONE]

0.109

11321

\[ {}y^{\prime \prime }+a y \left (1+{y^{\prime }}^{2}\right )^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.834

11322

\[ {}y^{\prime \prime }-a \left (-y+x y^{\prime }\right )^{v} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.217

11323

\[ {}y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.099

11324

\[ {}y^{\prime \prime }+\left (y^{\prime }-\frac {y}{x}\right )^{a} f \left (x , y\right ) = 0 \]

[NONE]

0.178

11325

\[ {}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

0.496

11326

\[ {}y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}}+b \]

[[_2nd_order, _missing_x]]

1.699

11327

\[ {}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+b y^{2}} \]

[[_2nd_order, _missing_x]]

2.569

11328

\[ {}y^{\prime \prime } = a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

0.563

11329

\[ {}y^{\prime \prime }-2 a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

2.474

11330

\[ {}y^{\prime \prime }-a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8.461

11331

\[ {}y^{\prime \prime } = 2 a \left (c +b x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.294

11332

\[ {}y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} = 0 \]

[[_2nd_order, _missing_x]]

4.136

11333

\[ {}y^{\prime \prime }-f \left (y^{\prime }, a x +b y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.107

11334

\[ {}y^{\prime \prime }-y f \left (x , \frac {y^{\prime }}{y}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.114

11335

\[ {}y^{\prime \prime }-x^{n -2} f \left (y x^{-n}, y^{\prime } x^{1-n}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.163

11336

\[ {}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0 \]

[[_2nd_order, _missing_x]]

0.595

11337

\[ {}a y^{\prime \prime }+h \left (y^{\prime }\right )+c y = 0 \]

[[_2nd_order, _missing_x]]

0.718

11338

\[ {}x y^{\prime \prime }+2 y^{\prime }-y^{n} x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.099

11339

\[ {}x y^{\prime \prime }+2 y^{\prime }+a \,x^{v} y^{n} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.099

11340

\[ {}x y^{\prime \prime }+2 y^{\prime }+x \,{\mathrm e}^{y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.092

11341

\[ {}x y^{\prime \prime }+a y^{\prime }+b x \,{\mathrm e}^{y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.092

11342

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.120

11343

\[ {}x y^{\prime \prime }+\left (y-1\right ) y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.576

11344

\[ {}x y^{\prime \prime }-x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.158

11345

\[ {}x y^{\prime \prime }+a \left (-y+x y^{\prime }\right )^{2}-b = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.159

11346

\[ {}2 x y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.567

11347

\[ {}x^{2} y^{\prime \prime } = a \left (y^{n}-y\right ) \]

[[_2nd_order, _with_linear_symmetries]]

0.101

11348

\[ {}x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.107

11349

\[ {}x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.069

11350

\[ {}x^{2} y^{\prime \prime }+\left (a +1\right ) x y^{\prime }-x^{k} f \left (x^{k} y, x y^{\prime }+k y\right ) = 0 \]

[NONE]

0.141

11351

\[ {}x^{2} y^{\prime \prime }+a \left (-y+x y^{\prime }\right )^{2}-b \,x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.159

11352

\[ {}x^{2} y^{\prime \prime }+a y {y^{\prime }}^{2}+b x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.085

11353

\[ {}x^{2} y^{\prime \prime }-\sqrt {a \,x^{2} {y^{\prime }}^{2}+b y^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.292

11354

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.732

11355

\[ {}4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.085

11356

\[ {}9 x^{2} y^{\prime \prime }+a y^{3}+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.186

11357

\[ {}x^{3} \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )+12 x y+24 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.095

11358

\[ {}x^{3} y^{\prime \prime }-a \left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.165

11359

\[ {}2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 x y\right ) y^{\prime }+b +x y \left (a +3 x y-2 y^{2} x^{2}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.096

11360

\[ {}2 \left (-x^{k}+4 x^{3}\right ) \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )-\left (k \,x^{k -1}-12 x^{2}\right ) \left (3 y^{\prime }+y^{2}\right )+a x y+b = 0 \]

[NONE]

0.127

11361

\[ {}x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.097

11362

\[ {}x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.156

11363

\[ {}x^{4} y^{\prime \prime }-x^{2} \left (x +y^{\prime }\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.157

11364

\[ {}x^{4} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.151

11365

\[ {}y^{\prime \prime } \sqrt {x}-y^{{3}/{2}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.117

11366

\[ {}\left (x^{2} a +b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {x^{2} a +b x +c}}\right ) = 0 \]

[NONE]

7.986

11367

\[ {}x^{\frac {n}{n +1}} y^{\prime \prime }-y^{\frac {2 n +1}{n +1}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.149

11368

\[ {}f \left (x \right )^{2} y^{\prime \prime }+f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }-h \left (y, f \left (x \right ) y^{\prime }\right ) = 0 \]

[NONE]

0.104

11369

\[ {}y^{\prime \prime } y-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.507

11370

\[ {}y^{\prime \prime } y-a x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.081

11371

\[ {}y^{\prime \prime } y-x^{2} a = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.084

11372

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2}-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.701

11373

\[ {}y^{\prime \prime } y+y^{2}-a x -b = 0 \]

[NONE]

0.088

11374

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.574

11375

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.138

11376

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.964

11377

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0 \]

[NONE]

0.128

11378

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-y^{2} \ln \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.353

11379

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-y^{\prime }+f \left (x \right ) y^{3}+y^{2} \left (\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {{f^{\prime }\left (x \right )}^{2}}{f \left (x \right )^{2}}\right ) = 0 \]

[NONE]

0.118

11380

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-f^{\prime }\left (x \right ) y-y^{3} = 0 \]

[NONE]

0.105

11381

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-f^{\prime \prime }\left (x \right ) y+f \left (x \right ) y^{3}-y^{4} = 0 \]

[NONE]

0.111

11382

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.377

11383

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+a y y^{\prime }-2 y^{2} a +b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

0.653

11384

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y = 0 \]

[[_2nd_order, _missing_x]]

1.206

11385

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0 \]

[[_2nd_order, _missing_x]]

2.255

11386

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right ) = 0 \]

[[_2nd_order, _reducible, _mu_xy]]

4.269

11387

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.215

11388

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+\left (g \left (x \right )+y^{2} f \left (x \right )\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right ) = 0 \]

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.121

11389

\[ {}y^{\prime \prime } y-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.062

11390

\[ {}y^{\prime \prime } y-a {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.362

11391

\[ {}y^{\prime \prime } y+a \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.811

11392

\[ {}y^{\prime \prime } y+a {y^{\prime }}^{2}+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

2.427

11393

\[ {}y^{\prime \prime } y+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{-a +1} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

10.363

11394

\[ {}y^{\prime \prime } y+a {y^{\prime }}^{2}+f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.097

11395

\[ {}y^{\prime \prime } y+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0 \]

[[_2nd_order, _missing_x]]

8.234

11396

\[ {}y^{\prime \prime } y-\frac {\left (a -1\right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (a +2\right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{a +2} = 0 \]

[NONE]

0.137

11397

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x]]

204.332

11398

\[ {}y^{\prime \prime } \left (x +y\right )+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

4.854

11399

\[ {}y^{\prime \prime } \left (x -y\right )+2 y^{\prime } \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.145

11400

\[ {}y^{\prime \prime } \left (x -y\right )-\left (y^{\prime }+1\right ) \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.152