2.2.112 Problems 11101 to 11200

Table 2.225: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11101

\[ {}y^{\prime \prime } = -\frac {a \left (n -1\right ) \sin \left (2 a x \right ) y^{\prime }}{\cos \left (a x \right )^{2}}-\frac {n \,a^{2} \left (\left (n -1\right ) \sin \left (a x \right )^{2}+\cos \left (a x \right )^{2}\right ) y}{\cos \left (a x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

4.341

11102

\[ {}y^{\prime \prime } = \frac {2 y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.736

11103

\[ {}y^{\prime \prime } = -\frac {a y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.793

11104

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-\left (a \sin \left (x \right )^{2}+n \left (n -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.492

11105

\[ {}y^{\prime \prime } = -\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

4.816

11106

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-\left (a^{2} \cos \left (x \right )^{2}+b \cos \left (x \right )+\frac {b^{2}}{\left (2 a -3\right )^{2}}+3 a +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12.375

11107

\[ {}y^{\prime \prime } = -\frac {\left (-\left (a^{2} b^{2}-\left (a +1\right )^{2}\right ) \sin \left (x \right )^{2}-a \left (a +1\right ) b \sin \left (2 x \right )-a \left (a -1\right )\right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5.703

11108

\[ {}y^{\prime \prime } = -\frac {\left (a \cos \left (x \right )^{2}+b \sin \left (x \right )^{2}+c \right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.658

11109

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.577

11110

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

3.647

11111

\[ {}y^{\prime \prime } = \frac {\cos \left (2 x \right ) y^{\prime }}{\sin \left (2 x \right )}-2 y \]

[[_2nd_order, _with_linear_symmetries]]

2.415

11112

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (-17 \sin \left (x \right )^{2}-1\right ) y}{4 \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.058

11113

\[ {}y^{\prime \prime } = -\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+x^{2} \sin \left (x \right )^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.925

11114

\[ {}y^{\prime \prime } = -\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

4.706

11115

\[ {}y^{\prime \prime } = -\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

2.460

11116

\[ {}y^{\prime \prime } = -\frac {\left (4 v \left (v +1\right ) \sin \left (x \right )^{2}-\cos \left (x \right )^{2}+2-4 n^{2}\right ) y}{4 \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

3.667

11117

\[ {}y^{\prime \prime } = \frac {\left (3 \sin \left (x \right )^{2}+1\right ) y^{\prime }}{\cos \left (x \right ) \sin \left (x \right )}+\frac {\sin \left (x \right )^{2} y}{\cos \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

3.490

11118

\[ {}y^{\prime \prime } = -\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

5.416

11119

\[ {}y^{\prime \prime } = \frac {\phi ^{\prime }\left (x \right ) y^{\prime }}{\phi \left (x \right )-\phi \left (a \right )}-\frac {\left (-n \left (n +1\right ) \left (\phi \left (x \right )-\phi \left (a \right )\right )^{2}+D^{\left (2\right )}\left (\phi \right )\left (a \right )\right ) y}{\phi \left (x \right )-\phi \left (a \right )} \]

[[_2nd_order, _with_linear_symmetries]]

0.590

11120

\[ {}y^{\prime \prime } = -\frac {\left (\phi \left (x^{3}\right )-\phi \left (x \right ) \phi ^{\prime }\left (x \right )-\phi ^{\prime \prime }\left (x \right )\right ) y^{\prime }}{\phi ^{\prime }\left (x \right )+\phi \left (x \right )^{2}}-\frac {\left ({\phi ^{\prime }\left (x \right )}^{2}-\phi \left (x \right )^{2} \phi ^{\prime }\left (x \right )-\phi \left (x \right ) \phi ^{\prime \prime }\left (x \right )\right ) y}{\phi ^{\prime }\left (x \right )+\phi \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.183

11121

\[ {}y^{\prime \prime } = \frac {2 \,\operatorname {JacobiSN}\left (x , k\right ) \operatorname {JacobiCN}\left (x , k\right ) \operatorname {JacobiDN}\left (x , k\right ) y^{\prime }-2 \left (1-2 \left (k^{2}+1\right ) \operatorname {JacobiSN}\left (a , k\right )^{2}+3 k^{2} \operatorname {JacobiSN}\left (a , k\right )^{4}\right ) y}{\operatorname {JacobiSN}\left (x , k\right )^{2}-\operatorname {JacobiSN}\left (a , k\right )} \]

[[_2nd_order, _with_linear_symmetries]]

0.981

11122

\[ {}y^{\prime \prime } = -\frac {x y^{\prime }}{f \left (x \right )}+\frac {y}{f \left (x \right )} \]

[[_2nd_order, _with_linear_symmetries]]

0.840

11123

\[ {}y^{\prime \prime } = -\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \]

[[_2nd_order, _with_linear_symmetries]]

0.349

11124

\[ {}y^{\prime \prime } = -\frac {\left (2 f \left (x \right ) {g^{\prime }\left (x \right )}^{2} g \left (x \right )-\left (g \left (x \right )^{2}-1\right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )\right ) y^{\prime }}{f \left (x \right ) g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )}-\frac {\left (\left (g \left (x \right )^{2}-1\right ) \left (f^{\prime }\left (x \right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )-f \left (x \right ) f^{\prime \prime }\left (x \right ) g^{\prime }\left (x \right )\right )-\left (2 f^{\prime }\left (x \right ) g \left (x \right )+v \left (v +1\right ) f \left (x \right ) g^{\prime }\left (x \right )\right ) f \left (x \right ) {g^{\prime }\left (x \right )}^{2}\right ) y}{f \left (x \right )^{2} g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

2.682

11125

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

1.049

11126

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

1.048

11127

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.025

11128

\[ {}y^{\prime \prime \prime }-\lambda y = 0 \]

[[_3rd_order, _missing_x]]

0.131

11129

\[ {}y^{\prime \prime \prime }+y a \,x^{3}-b x = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.046

11130

\[ {}y^{\prime \prime \prime }-a \,x^{b} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.043

11131

\[ {}y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

0.073

11132

\[ {}y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0 \]

[[_3rd_order, _missing_y]]

0.240

11133

\[ {}y^{\prime \prime \prime }+2 a x y^{\prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.048

11134

\[ {}y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-b y a = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.057

11135

\[ {}y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.085

11136

\[ {}y^{\prime \prime \prime }-3 \left (2 \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+b y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.055

11137

\[ {}y^{\prime \prime \prime }+\left (-n^{2}+1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }+\frac {\left (\left (-n^{2}+1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right )-a \right ) y}{2} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.054

11138

\[ {}y^{\prime \prime \prime }-\left (4 n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }-2 n \left (n +1\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.052

11139

\[ {}y^{\prime \prime \prime }+\left (A \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+a \right ) y^{\prime }+B \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.050

11140

\[ {}y^{\prime \prime \prime }-\left (3 k^{2} \operatorname {JacobiSN}\left (z , x\right )^{2}+a \right ) y^{\prime }+\left (b +c \operatorname {JacobiSN}\left (z , x\right )^{2}-3 k^{2} \operatorname {JacobiSN}\left (z , x\right ) \operatorname {JacobiCN}\left (z , x\right ) \operatorname {JacobiDN}\left (z , x\right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

11141

\[ {}y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

11142

\[ {}y^{\prime \prime \prime }+2 f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.047

11143

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

[[_3rd_order, _missing_x]]

0.074

11144

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.615

11145

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.140

11146

\[ {}y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0 \]

[[_3rd_order, _missing_x]]

0.208

11147

\[ {}y^{\prime \prime \prime }-6 x y^{\prime \prime }+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 a x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

11148

\[ {}y^{\prime \prime \prime }+3 a x y^{\prime \prime }+3 a^{2} x^{2} y^{\prime }+a^{3} x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.049

11149

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } \sin \left (x \right )-2 y^{\prime } \cos \left (x \right )+y \sin \left (x \right )-\ln \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.053

11150

\[ {}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime }+f \left (x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.048

11151

\[ {}y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y\right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.053

11152

\[ {}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+g \left (x \right ) y^{\prime }+\left (f \left (x \right ) g \left (x \right )+g^{\prime }\left (x \right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.048

11153

\[ {}y^{\prime \prime \prime }+3 f \left (x \right ) y^{\prime \prime }+\left (f^{\prime }\left (x \right )+2 f \left (x \right )^{2}+4 g \left (x \right )\right ) y^{\prime }+\left (4 f \left (x \right ) g \left (x \right )+2 g^{\prime }\left (x \right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.053

11154

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.122

11155

\[ {}27 y^{\prime \prime \prime }-36 n^{2} \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }-2 n \left (3+n \right ) \left (4 n -3\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.055

11156

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.052

11157

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.049

11158

\[ {}x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-x y^{\prime }-a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.052

11159

\[ {}x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.050

11160

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-f \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.055

11161

\[ {}2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.050

11162

\[ {}2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.055

11163

\[ {}2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.051

11164

\[ {}\left (-2+x \right ) x y^{\prime \prime \prime }-\left (-2+x \right ) x y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.054

11165

\[ {}\left (2 x -1\right ) y^{\prime \prime \prime }-8 x y^{\prime }+8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

11166

\[ {}\left (2 x -1\right ) y^{\prime \prime \prime }+\left (4+x \right ) y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

2.034

11167

\[ {}y^{\prime \prime \prime } x^{2}-6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.049

11168

\[ {}y^{\prime \prime \prime } x^{2}+\left (x +1\right ) y^{\prime \prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.048

11169

\[ {}y^{\prime \prime \prime } x^{2}-x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.918

11170

\[ {}y^{\prime \prime \prime } x^{2}+3 x y^{\prime \prime }+\left (4 a^{2} x^{2 a}+1-4 \nu ^{2} a^{2}\right ) y^{\prime } = 4 a^{3} x^{2 a -1} y \]

[[_3rd_order, _with_linear_symmetries]]

0.606

11171

\[ {}y^{\prime \prime \prime } x^{2}-3 \left (x -m \right ) x y^{\prime \prime }+\left (2 x^{2}+4 \left (n -m \right ) x +m \left (2 m -1\right )\right ) y^{\prime }-2 n \left (2 x -2 m +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.061

11172

\[ {}y^{\prime \prime \prime } x^{2}+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y-f \left (x \right ) = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.051

11173

\[ {}y^{\prime \prime \prime } x^{2}+5 x y^{\prime \prime }+4 y^{\prime }-\ln \left (x \right ) = 0 \]

[[_3rd_order, _missing_y]]

0.316

11174

\[ {}y^{\prime \prime \prime } x^{2}+6 x y^{\prime \prime }+6 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.158

11175

\[ {}y^{\prime \prime \prime } x^{2}+6 x y^{\prime \prime }+6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

11176

\[ {}y^{\prime \prime \prime } x^{2}-3 \left (p +q \right ) x y^{\prime \prime }+3 p \left (3 q +1\right ) y^{\prime }-x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

11177

\[ {}y^{\prime \prime \prime } x^{2}-2 \left (n +1\right ) x y^{\prime \prime }+\left (x^{2} a +6 n \right ) y^{\prime }-2 a x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.055

11178

\[ {}y^{\prime \prime \prime } x^{2}-\left (x^{2}-2 x \right ) y^{\prime \prime }-\left (x^{2}+\nu ^{2}-\frac {1}{4}\right ) y^{\prime }+\left (x^{2}-2 x +\nu ^{2}-\frac {1}{4}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.054

11179

\[ {}y^{\prime \prime \prime } x^{2}-\left (x +\nu \right ) x y^{\prime \prime }+\nu \left (2 x +1\right ) y^{\prime }-\nu \left (x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.059

11180

\[ {}y^{\prime \prime \prime } x^{2}-2 \left (x^{2}-x \right ) y^{\prime \prime }+\left (x^{2}-2 x +\frac {1}{4}-\nu ^{2}\right ) y^{\prime }+\left (\nu ^{2}-\frac {1}{4}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.057

11181

\[ {}y^{\prime \prime \prime } x^{2}-\left (x^{4}-6 x \right ) y^{\prime \prime }-\left (2 x^{3}-6\right ) y^{\prime }+2 x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.075

11182

\[ {}\left (x^{2}+1\right ) y^{\prime \prime \prime }+8 x y^{\prime \prime }+10 y^{\prime }-3+\frac {1}{x^{2}}-2 \ln \left (x \right ) = 0 \]

[[_3rd_order, _missing_y]]

0.678

11183

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.053

11184

\[ {}2 x \left (x -1\right ) y^{\prime \prime \prime }+3 \left (2 x -1\right ) y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.060

11185

\[ {}x^{3} y^{\prime \prime \prime }+\left (-\nu ^{2}+1\right ) x y^{\prime }+\left (a \,x^{3}+\nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.059

11186

\[ {}x^{3} y^{\prime \prime \prime }+\left (4 x^{3}+\left (-4 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (4 \nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.055

11187

\[ {}x^{3} y^{\prime \prime \prime }+\left (a \,x^{2 \nu }+1-\nu ^{2}\right ) x y^{\prime }+\left (b \,x^{3 \nu }+a \left (\nu -1\right ) x^{2 \nu }+\nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.084

11188

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-6 x^{3} \left (x -1\right ) \ln \left (x \right )+x^{3} \left (8+x \right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.310

11189

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+\left (-a^{2}+1\right ) x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.184

11190

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+\left (x^{2}+8\right ) x y^{\prime }-2 \left (x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

11191

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+\left (a \,x^{3}-12\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.296

11192

\[ {}x^{3} y^{\prime \prime \prime }+3 \left (-a +1\right ) x^{2} y^{\prime \prime }+\left (4 b^{2} c^{2} x^{2 c +1}+1-4 \nu ^{2} c^{2}+3 a \left (a -1\right ) x \right ) y^{\prime }+\left (4 b^{2} c^{2} \left (c -a \right ) x^{2 c}+a \left (4 \nu ^{2} c^{2}-a^{2}\right )\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.088

11193

\[ {}x^{3} y^{\prime \prime \prime }+\left (x +3\right ) x^{2} y^{\prime \prime }+5 \left (x -6\right ) x y^{\prime }+\left (4 x +30\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.055

11194

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+\ln \left (x \right )+2 x y^{\prime }-y-2 x^{3} = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

22.290

11195

\[ {}\left (x^{2}+1\right ) x y^{\prime \prime \prime }+3 \left (2 x^{2}+1\right ) y^{\prime \prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.059

11196

\[ {}\left (x +3\right ) x^{2} y^{\prime \prime \prime }-3 x \left (x +2\right ) y^{\prime \prime }+6 \left (x +1\right ) y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.078

11197

\[ {}2 \left (x -\operatorname {a1} \right ) \left (x -\operatorname {a2} \right ) \left (x -\operatorname {a3} \right ) y^{\prime \prime \prime }+\left (9 x^{2}-6 \left (\operatorname {a1} +\operatorname {a2} +\operatorname {a3} \right ) x +3 \operatorname {a1} \operatorname {a2} +3 \operatorname {a1} \operatorname {a3} +3 \operatorname {a2} \operatorname {a3} \right ) y^{\prime \prime }-2 \left (\left (n^{2}+n -3\right ) x +b \right ) y^{\prime }-n \left (n +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.066

11198

\[ {}\left (x +1\right ) x^{3} y^{\prime \prime \prime }-\left (4 x +2\right ) x^{2} y^{\prime \prime }+\left (10 x +4\right ) x y^{\prime }-4 \left (3 x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.065

11199

\[ {}4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1 = 0 \]

[[_3rd_order, _missing_y]]

0.903

11200

\[ {}\left (x^{2}+1\right ) x^{3} y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-4 \left (3 x^{2}+1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.058