2.2.109 Problems 10801 to 10900

Table 2.219: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10801

\[ {}x y^{\prime \prime }-2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x +2 a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.356

10802

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.925

10803

\[ {}x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.557

10804

\[ {}x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.367

10805

\[ {}x y^{\prime \prime }-\left (2 x^{2} a +1\right ) y^{\prime }+b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.515

10806

\[ {}x y^{\prime \prime }-2 \left (x^{2}-a \right ) y^{\prime }+2 n x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.079

10807

\[ {}x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.226

10808

\[ {}x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.152

10809

\[ {}x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.363

10810

\[ {}x y^{\prime \prime }+\left (f \left (x \right ) x +2\right ) y^{\prime }+f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.761

10811

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.279

10812

\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.518

10813

\[ {}2 x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.688

10814

\[ {}2 x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+a y = 0 \]

[_Laguerre]

0.703

10815

\[ {}\left (2 x -1\right ) y^{\prime \prime }-\left (-4+3 x \right ) y^{\prime }+\left (x -3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.278

10816

\[ {}4 x y^{\prime \prime }-\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.424

10817

\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.212

10818

\[ {}4 x y^{\prime \prime }+4 y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.077

10819

\[ {}4 x y^{\prime \prime }+4 y-\left (x +2\right ) y+l y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.538

10820

\[ {}4 x y^{\prime \prime }+4 m y^{\prime }-\left (x -2 m -4 n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.779

10821

\[ {}16 x y^{\prime \prime }+8 y^{\prime }-\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.626

10822

\[ {}a x y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_Emden, _Fowler]]

1.137

10823

\[ {}a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+3 b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.370

10824

\[ {}5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{{1}/{5}} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.839

10825

\[ {}2 a x y^{\prime \prime }+\left (b x +a \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.898

10826

\[ {}2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.917

10827

\[ {}\left (\operatorname {a2} x +\operatorname {b2} \right ) y^{\prime \prime }+\left (\operatorname {a1} x +\operatorname {b1} \right ) y^{\prime }+\left (\operatorname {a0} x +\operatorname {b0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6.094

10828

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

0.752

10829

\[ {}x^{2} y^{\prime \prime }-12 y = 0 \]

[[_Emden, _Fowler]]

0.748

10830

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

1.180

10831

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.855

10832

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.830

10833

\[ {}x^{2} y^{\prime \prime }-\left (x^{2} a +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.890

10834

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.196

10835

\[ {}x^{2} y^{\prime \prime }+\left (x^{2} a -v \left (v -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.163

10836

\[ {}x^{2} y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.652

10837

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.085

10838

\[ {}x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.278

10839

\[ {}x^{2} y^{\prime \prime }+a y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.325

10840

\[ {}x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.699

10841

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y-x^{2} a = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.809

10842

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.261

10843

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.803

10844

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

2.205

10845

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.237

10846

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (l \,x^{2}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.158

10847

\[ {}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.467

10848

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y-3 x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.761

10849

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (a \,x^{m}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.080

10850

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.786

10851

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a x -b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.579

10852

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2} a +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.619

10853

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (l \,x^{2}+a x -n \left (n +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.847

10854

\[ {}x^{2} y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.624

10855

\[ {}x^{2} y^{\prime \prime }+2 \left (x +a \right ) y^{\prime }-b \left (b -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.728

10856

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-x^{5} \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.271

10857

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y-x \sin \left (x \right )-\left (x^{2} a +12 a +4\right ) \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.885

10858

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.616

10859

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10.263

10860

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.898

10861

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.837

10862

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.402

10863

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.410

10864

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y-5 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.596

10865

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y-x^{2} \ln \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.796

10866

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y-x^{4}+x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.976

10867

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }-\left (2 x^{3}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.824

10868

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y-\sin \left (x \right ) x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.508

10869

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

2.028

10870

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.976

10871

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{m}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.188

10872

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.644

10873

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.019

10874

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.355

10875

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.145

10876

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.457

10877

\[ {}x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.642

10878

\[ {}x^{2} y^{\prime \prime }-x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.461

10879

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.662

10880

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (2+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.283

10881

\[ {}x^{2} y^{\prime \prime }-x \left (4+x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.199

10882

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (v -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.659

10883

\[ {}x^{2} y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.152

10884

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.416

10885

\[ {}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.130

10886

\[ {}x^{2} y^{\prime \prime }+\left (a +2 b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) b \,x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.292

10887

\[ {}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.223

10888

\[ {}x^{2} y^{\prime \prime }+\left (2 a x +b \right ) x y^{\prime }+\left (a b x +c \,x^{2}+d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.534

10889

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.287

10890

\[ {}x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.592

10891

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+2\right ) x y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.326

10892

\[ {}x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.463

10893

\[ {}x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (4 x^{4}+2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.336

10894

\[ {}x^{2} y^{\prime \prime }+\left (x^{2} a +b \right ) x y^{\prime }+f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.555

10895

\[ {}x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.809

10896

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+\left (2 n +2 a +1\right ) x^{2}+\left (-1\right )^{n} a -a^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.045

10897

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2 n}+\operatorname {b1} \,x^{n}+\operatorname {c1} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.912

10898

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{\operatorname {a1}}+b \right ) x y^{\prime }+\left (A \,x^{2 \operatorname {a1}}+B \,x^{\operatorname {a1}}+C \,x^{\operatorname {b1}}+\operatorname {DD} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.792

10899

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2} \tan \left (x \right )-x \right ) y^{\prime }-\left (x \tan \left (x \right )+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.416

10900

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2} \cot \left (x \right )+x \right ) y^{\prime }+\left (x \cot \left (x \right )+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.609