2.5.4 problem 5
Internal
problem
ID
[18238]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
32.
Problems
at
page
89
Problem
number
:
5
Date
solved
:
Monday, December 23, 2024 at 09:18:41 PM
CAS
classification
:
[[_homogeneous, `class G`]]
Solve
\begin{align*} \sqrt {t^{2}+T}&=T^{\prime } \end{align*}
Solved as first order isobaric ode
Time used: 2.435 (sec)
Solving for \(T'\) gives
\begin{align*}
\tag{1} T' &= \sqrt {t^{2}+T} \\
\end{align*}
Each of the above ode’s is now solved An ode \(T^{\prime }=f(t,T)\) is isobaric if
\[ f(t t, t^m T) = t^{m-1} f(t,T)\tag {1} \]
Where here
\[ f(t,T) = \sqrt {t^{2}+T}\tag {2} \]
\(m\)
is the order of isobaric. Substituting (2) into (1) and solving for \(m\) gives
\[ m = 2 \]
Since the ode is
isobaric of order \(m=2\) , then the substitution
\begin{align*} T&=u t^m \\ &=u \,t^{2} \end{align*}
Converts the ODE to a separable in \(u \left (t \right )\) . Performing this substitution gives
\[ 2 t u \left (t \right )+t^{2} u^{\prime }\left (t \right ) = \sqrt {t^{2}+t^{2} u \left (t \right )} \]
The ode \(u^{\prime }\left (t \right ) = \frac {\sqrt {1+u \left (t \right )}-2 u \left (t \right )}{t}\) is
separable as it can be written as
\begin{align*} u^{\prime }\left (t \right )&= \frac {\sqrt {1+u \left (t \right )}-2 u \left (t \right )}{t}\\ &= f(t) g(u) \end{align*}
Where
\begin{align*} f(t) &= \frac {1}{t}\\ g(u) &= \sqrt {u +1}-2 u \end{align*}
Integrating gives
\begin{align*} \int { \frac {1}{g(u)} \,du} &= \int { f(t) \,dt}\\ \int { \frac {1}{\sqrt {u +1}-2 u}\,du} &= \int { \frac {1}{t} \,dt}\\ -\frac {\ln \left (2 u \left (t \right )-\sqrt {1+u \left (t \right )}\right )}{2}+\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {1+u \left (t \right )}-1\right ) \sqrt {17}}{17}\right )}{17}&=\ln \left (t \right )+c_1 \end{align*}
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is
zero, since we had to divide by this above. Solving \(g(u)=0\) or \(\sqrt {u +1}-2 u=0\) for \(u \left (t \right )\) gives
\begin{align*} u \left (t \right )&=\frac {1}{8}+\frac {\sqrt {17}}{8} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
Therefore the solutions found are
\begin{align*} -\frac {\ln \left (2 u \left (t \right )-\sqrt {1+u \left (t \right )}\right )}{2}+\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {1+u \left (t \right )}-1\right ) \sqrt {17}}{17}\right )}{17} = \ln \left (t \right )+c_1\\ u \left (t \right ) = \frac {1}{8}+\frac {\sqrt {17}}{8} \end{align*}
Converting \(-\frac {\ln \left (2 u \left (t \right )-\sqrt {1+u \left (t \right )}\right )}{2}+\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {1+u \left (t \right )}-1\right ) \sqrt {17}}{17}\right )}{17} = \ln \left (t \right )+c_1\) back to \(T\) gives
\begin{align*} -\frac {\ln \left (\frac {2 T}{t^{2}}-\sqrt {1+\frac {T}{t^{2}}}\right )}{2}+\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {1+\frac {T}{t^{2}}}-1\right ) \sqrt {17}}{17}\right )}{17} = \ln \left (t \right )+c_1 \end{align*}
Converting \(u \left (t \right ) = \frac {1}{8}+\frac {\sqrt {17}}{8}\) back to \(T\) gives
\begin{align*} \frac {T}{t^{2}} = \frac {1}{8}+\frac {\sqrt {17}}{8} \end{align*}
Solving for \(T\) gives
\begin{align*}
-\frac {\ln \left (\frac {2 T}{t^{2}}-\sqrt {1+\frac {T}{t^{2}}}\right )}{2}+\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {1+\frac {T}{t^{2}}}-1\right ) \sqrt {17}}{17}\right )}{17} &= \ln \left (t \right )+c_1 \\
T &= \frac {\left (1+\sqrt {17}\right ) t^{2}}{8} \\
\end{align*}
Figure 2.54: Slope field plot
\(\sqrt {t^{2}+T} = T^{\prime }\)
Summary of solutions found
\begin{align*}
-\frac {\ln \left (\frac {2 T}{t^{2}}-\sqrt {1+\frac {T}{t^{2}}}\right )}{2}+\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {1+\frac {T}{t^{2}}}-1\right ) \sqrt {17}}{17}\right )}{17} &= \ln \left (t \right )+c_1 \\
T &= \frac {\left (1+\sqrt {17}\right ) t^{2}}{8} \\
\end{align*}
Solved using Lie symmetry for first order ode
Time used: 1.726 (sec)
Writing the ode as
\begin{align*} T^{\prime }&=\sqrt {t^{2}+T}\\ T^{\prime }&= \omega \left ( t,T\right ) \end{align*}
The condition of Lie symmetry is the linearized PDE given by
\begin{align*} \eta _{t}+\omega \left ( \eta _{T}-\xi _{t}\right ) -\omega ^{2}\xi _{T}-\omega _{t}\xi -\omega _{T}\eta =0\tag {A} \end{align*}
To determine \(\xi ,\eta \) then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives
\begin{align*}
\tag{1E} \xi &= T a_{3}+t a_{2}+a_{1} \\
\tag{2E} \eta &= T b_{3}+t b_{2}+b_{1} \\
\end{align*}
Where the unknown coefficients are
\[
\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\}
\]
Substituting
equations (1E,2E) and \(\omega \) into (A) gives
\begin{equation}
\tag{5E} b_{2}+\sqrt {t^{2}+T}\, \left (b_{3}-a_{2}\right )-\left (t^{2}+T \right ) a_{3}-\frac {t \left (T a_{3}+t a_{2}+a_{1}\right )}{\sqrt {t^{2}+T}}-\frac {T b_{3}+t b_{2}+b_{1}}{2 \sqrt {t^{2}+T}} = 0
\end{equation}
Putting the above in normal form gives
\[
-\frac {2 \sqrt {t^{2}+T}\, t^{2} a_{3}+2 \sqrt {t^{2}+T}\, T a_{3}+2 T t a_{3}+4 t^{2} a_{2}-2 t^{2} b_{3}-2 b_{2} \sqrt {t^{2}+T}+2 T a_{2}-T b_{3}+2 t a_{1}+t b_{2}+b_{1}}{2 \sqrt {t^{2}+T}} = 0
\]
Setting the numerator to zero gives
\begin{equation}
\tag{6E} -2 \sqrt {t^{2}+T}\, t^{2} a_{3}-2 \sqrt {t^{2}+T}\, T a_{3}-2 T t a_{3}-4 t^{2} a_{2}+2 t^{2} b_{3}+2 b_{2} \sqrt {t^{2}+T}-2 T a_{2}+T b_{3}-2 t a_{1}-t b_{2}-b_{1} = 0
\end{equation}
Simplifying the above gives
\begin{equation}
\tag{6E} -2 \sqrt {t^{2}+T}\, t^{2} a_{3}-2 \left (t^{2}+T \right ) a_{2}+2 \left (t^{2}+T \right ) b_{3}-2 \sqrt {t^{2}+T}\, T a_{3}-2 T t a_{3}-2 t^{2} a_{2}+2 b_{2} \sqrt {t^{2}+T}-T b_{3}-2 t a_{1}-t b_{2}-b_{1} = 0
\end{equation}
Since the PDE has
radicals, simplifying gives
\[
-2 \sqrt {t^{2}+T}\, t^{2} a_{3}-2 \sqrt {t^{2}+T}\, T a_{3}-2 T t a_{3}-4 t^{2} a_{2}+2 t^{2} b_{3}+2 b_{2} \sqrt {t^{2}+T}-2 T a_{2}+T b_{3}-2 t a_{1}-t b_{2}-b_{1} = 0
\]
Looking at the above PDE shows the following are all
the terms with \(\{T, t\}\) in them.
\[
\left \{T, t, \sqrt {t^{2}+T}\right \}
\]
The following substitution is now made to be able to
collect on all terms with \(\{T, t\}\) in them
\[
\left \{T = v_{1}, t = v_{2}, \sqrt {t^{2}+T} = v_{3}\right \}
\]
The above PDE (6E) now becomes
\begin{equation}
\tag{7E} -2 v_{3} v_{2}^{2} a_{3}-4 v_{2}^{2} a_{2}-2 v_{1} v_{2} a_{3}-2 v_{3} v_{1} a_{3}+2 v_{2}^{2} b_{3}-2 v_{2} a_{1}-2 v_{1} a_{2}-v_{2} b_{2}+2 b_{2} v_{3}+v_{1} b_{3}-b_{1} = 0
\end{equation}
Collecting
the above on the terms \(v_i\) introduced, and these are
\[
\{v_{1}, v_{2}, v_{3}\}
\]
Equation (7E) now becomes
\begin{equation}
\tag{8E} -2 v_{1} v_{2} a_{3}-2 v_{3} v_{1} a_{3}+\left (-2 a_{2}+b_{3}\right ) v_{1}-2 v_{3} v_{2}^{2} a_{3}+\left (-4 a_{2}+2 b_{3}\right ) v_{2}^{2}+\left (-2 a_{1}-b_{2}\right ) v_{2}+2 b_{2} v_{3}-b_{1} = 0
\end{equation}
Setting each coefficients in (8E) to zero gives the following equations to solve
\begin{align*} -2 a_{3}&=0\\ -b_{1}&=0\\ 2 b_{2}&=0\\ -2 a_{1}-b_{2}&=0\\ -4 a_{2}+2 b_{3}&=0\\ -2 a_{2}+b_{3}&=0 \end{align*}
Solving the above equations for the unknowns gives
\begin{align*} a_{1}&=0\\ a_{2}&=a_{2}\\ a_{3}&=0\\ b_{1}&=0\\ b_{2}&=0\\ b_{3}&=2 a_{2} \end{align*}
Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any
unknown in the RHS) gives
\begin{align*}
\xi &= t \\
\eta &= 2 T \\
\end{align*}
Shifting is now applied to make \(\xi =0\) in order to simplify the rest of
the computation
\begin{align*} \eta &= \eta - \omega \left (t,T\right ) \xi \\ &= 2 T - \left (\sqrt {t^{2}+T}\right ) \left (t\right ) \\ &= -\sqrt {t^{2}+T}\, t +2 T\\ \xi &= 0 \end{align*}
The next step is to determine the canonical coordinates \(R,S\) . The canonical coordinates map \(\left ( t,T\right ) \to \left ( R,S \right )\)
where \(\left ( R,S \right )\) are the canonical coordinates which make the original ode become a quadrature and
hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
\begin{align*} \frac {d t}{\xi } &= \frac {d T}{\eta } = dS \tag {1} \end{align*}
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial t} + \eta \frac {\partial }{\partial T}\right ) S(t,T) = 1\) . Starting with the first pair of ode’s in (1)
gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\) . Since
\(\xi =0\) then in this special case
\begin{align*} R = t \end{align*}
\(S\) is found from
\begin{align*} S &= \int { \frac {1}{\eta }} dy\\ &= \int { \frac {1}{-\sqrt {t^{2}+T}\, t +2 T}} dy \end{align*}
Which results in
\begin{align*} S&= -\frac {\ln \left (\sqrt {t^{2}+T}\, t +2 T \right )}{4}-\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {t^{2}+T}+t \right ) \sqrt {17}}{17 t}\right )}{34}+\frac {\ln \left (-\sqrt {t^{2}+T}\, t +2 T \right )}{4}-\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (-t +4 \sqrt {t^{2}+T}\right ) \sqrt {17}}{17 t}\right )}{34}+\frac {\ln \left (-t^{4}-T \,t^{2}+4 T^{2}\right )}{4}-\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (-t^{2}+8 T \right ) \sqrt {17}}{17 t^{2}}\right )}{34} \end{align*}
Now that \(R,S\) are found, we need to setup the ode in these coordinates. This is done by
evaluating
\begin{align*} \frac {dS}{dR} &= \frac { S_{t} + \omega (t,T) S_{T} }{ R_{t} + \omega (t,T) R_{T} }\tag {2} \end{align*}
Where in the above \(R_{t},R_{T},S_{t},S_{T}\) are all partial derivatives and \(\omega (t,T)\) is the right hand side of the original ode
given by
\begin{align*} \omega (t,T) &= \sqrt {t^{2}+T} \end{align*}
Evaluating all the partial derivatives gives
\begin{align*} R_{t} &= 1\\ R_{T} &= 0\\ S_{t} &= \frac {t^{6}+2 T \,t^{4}-3 T^{2} t^{2}-4 T^{3}}{\left (\sqrt {t^{2}+T}\, t -2 T \right )^{2} \left (\sqrt {t^{2}+T}\, t +2 T \right ) \sqrt {t^{2}+T}}\\ S_{T} &= \frac {\left (t +2 \sqrt {t^{2}+T}\right ) T +t^{3}}{\left (-t^{4}-T \,t^{2}+4 T^{2}\right ) \sqrt {t^{2}+T}} \end{align*}
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\begin{align*} \frac {dS}{dR} &= 0\tag {2A} \end{align*}
We now need to express the RHS as function of \(R\) only. This is done by solving for \(t,T\) in terms of
\(R,S\) from the result obtained earlier and simplifying. This gives
\begin{align*} \frac {dS}{dR} &= 0 \end{align*}
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts
an ode, no matter how complicated it is, to one that can be solved by integration when the
ode is in the canonical coordiates \(R,S\) .
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\) , then we only need to integrate \(f(R)\) .
\begin{align*} \int {dS} &= \int {0\, dR} + c_2 \\ S \left (R \right ) &= c_2 \end{align*}
To complete the solution, we just need to transform the above back to \(t,T\) coordinates. This
results in
\begin{align*} -\frac {\ln \left (\sqrt {t^{2}+T}\, t +2 T\right )}{4}-\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {t^{2}+T}+t \right ) \sqrt {17}}{17 t}\right )}{34}+\frac {\ln \left (-\sqrt {t^{2}+T}\, t +2 T\right )}{4}+\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (t -4 \sqrt {t^{2}+T}\right ) \sqrt {17}}{17 t}\right )}{34}+\frac {\ln \left (-t^{4}-T t^{2}+4 T^{2}\right )}{4}-\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (-t^{2}+8 T\right ) \sqrt {17}}{17 t^{2}}\right )}{34} = c_2 \end{align*}
The following diagram shows solution curves of the original ode and how they transform in
the canonical coordinates space using the mapping shown.
Original ode in \(t,T\) coordinates
Canonical
coordinates
transformation
ODE in canonical coordinates \((R,S)\)
\( \frac {dT}{dt} = \sqrt {t^{2}+T}\)
\( \frac {d S}{d R} = 0\)
\(\!\begin {aligned} R&= t\\ S&= -\frac {\ln \left (\sqrt {t^{2}+T}\, t +2 T \right )}{4}-\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {t^{2}+T}+t \right ) \sqrt {17}}{17 t}\right )}{34}+\frac {\ln \left (-\sqrt {t^{2}+T}\, t +2 T \right )}{4}+\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (t -4 \sqrt {t^{2}+T}\right ) \sqrt {17}}{17 t}\right )}{34}+\frac {\ln \left (-t^{4}-T \,t^{2}+4 T^{2}\right )}{4}-\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (-t^{2}+8 T \right ) \sqrt {17}}{17 t^{2}}\right )}{34} \end {aligned} \)
Figure 2.55: Slope field plot
\(\sqrt {t^{2}+T} = T^{\prime }\)
Summary of solutions found
\begin{align*}
-\frac {\ln \left (\sqrt {t^{2}+T}\, t +2 T\right )}{4}-\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (4 \sqrt {t^{2}+T}+t \right ) \sqrt {17}}{17 t}\right )}{34}+\frac {\ln \left (-\sqrt {t^{2}+T}\, t +2 T\right )}{4}+\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (t -4 \sqrt {t^{2}+T}\right ) \sqrt {17}}{17 t}\right )}{34}+\frac {\ln \left (-t^{4}-T t^{2}+4 T^{2}\right )}{4}-\frac {\sqrt {17}\, \operatorname {arctanh}\left (\frac {\left (-t^{2}+8 T\right ) \sqrt {17}}{17 t^{2}}\right )}{34} &= c_2 \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \sqrt {t^{2}+T}=T^{\prime } \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & T^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & T^{\prime }=\sqrt {t^{2}+T} \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1 st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful `
Maple dsolve solution
Solving time : 0.005
(sec)
Leaf size : 136
dsolve (( t ^2+ T ( t ))^(1/2) = diff ( T ( t ), t ),
T(t),singsol=all)
\[
-17 \ln \left (-t^{4}-T t^{2}+4 T^{2}\right )-17 \ln \left (-\sqrt {t^{2}+T}\, t +2 T\right )+17 \ln \left (\sqrt {t^{2}+T}\, t +2 T\right )+\left (2 \,\operatorname {arctanh}\left (\frac {\left (4 \sqrt {t^{2}+T}+t \right ) \sqrt {17}}{17 t}\right )-2 \,\operatorname {arctanh}\left (\frac {\left (t -4 \sqrt {t^{2}+T}\right ) \sqrt {17}}{17 t}\right )-2 \,\operatorname {arctanh}\left (\frac {\left (t^{2}-8 T\right ) \sqrt {17}}{17 t^{2}}\right )\right ) \sqrt {17}-c_1 = 0
\]
Mathematica DSolve solution
Solving time : 0.256
(sec)
Leaf size : 135
DSolve [{ Sqrt [ t ^2+ T [ t ]]== D [ T [ t ], t ],{}},
T[t],t,IncludeSingularSolutions-> True ]
\[
\text {Solve}\left [\frac {1}{34} \left (-34 \log \left (\sqrt {t^2+T(t)}-t\right )-\left (\sqrt {17}-17\right ) \log \left (2 \left (\sqrt {17}-4\right ) t \sqrt {t^2+T(t)}-2 \left (\sqrt {17}-4\right ) t^2-\left (\sqrt {17}-3\right ) T(t)\right )+\left (17+\sqrt {17}\right ) \log \left (2 \left (4+\sqrt {17}\right ) t \sqrt {t^2+T(t)}-2 \left (4+\sqrt {17}\right ) t^2-\left (3+\sqrt {17}\right ) T(t)\right )\right )=c_1,T(t)\right ]
\]