2.3.7 problem 8
Internal
problem
ID
[18227]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
IV.
Methods
of
solution:
First
order
equations.
section
29.
Problems
at
page
81
Problem
number
:
8
Date
solved
:
Friday, December 20, 2024 at 10:46:21 AM
CAS
classification
:
[_exact]
Solve
\begin{align*} \left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime }&=\frac {T}{t \sqrt {t^{2}-T^{2}}}-t \end{align*}
Solved as first order Exact ode
Time used: 0.468 (sec)
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that
satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives
\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence
\begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that
\begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied,
then the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know
now that we can do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not
satisfied then this method will not work and we have to now look for an integrating
factor to force this condition, which might or might not exist. The first step is
to write the ODE in standard form to check for exactness, which is
\[ M(t,T) \mathop {\mathrm {d}t}+ N(t,T) \mathop {\mathrm {d}T}=0 \tag {1A} \]
Therefore
\begin{align*} \left (T +\frac {1}{\sqrt {-T^{2}+t^{2}}}\right )\mathop {\mathrm {d}T} &= \left (\frac {T}{t \sqrt {-T^{2}+t^{2}}}-t\right )\mathop {\mathrm {d}t}\\ \left (-\frac {T}{t \sqrt {-T^{2}+t^{2}}}+t\right )\mathop {\mathrm {d}t} + \left (T +\frac {1}{\sqrt {-T^{2}+t^{2}}}\right )\mathop {\mathrm {d}T} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(t,T) &= -\frac {T}{t \sqrt {-T^{2}+t^{2}}}+t\\ N(t,T) &= T +\frac {1}{\sqrt {-T^{2}+t^{2}}} \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied
\[ \frac {\partial M}{\partial T} = \frac {\partial N}{\partial t} \]
Using result found above gives
\begin{align*} \frac {\partial M}{\partial T} &= \frac {\partial }{\partial T} \left (-\frac {T}{t \sqrt {-T^{2}+t^{2}}}+t\right )\\ &= -\frac {t}{\left (-T^{2}+t^{2}\right )^{{3}/{2}}} \end{align*}
And
\begin{align*} \frac {\partial N}{\partial t} &= \frac {\partial }{\partial t} \left (T +\frac {1}{\sqrt {-T^{2}+t^{2}}}\right )\\ &= -\frac {t}{\left (-T^{2}+t^{2}\right )^{{3}/{2}}} \end{align*}
Since \(\frac {\partial M}{\partial T}= \frac {\partial N}{\partial t}\) , then the ODE is exact The following equations are now set up to solve for the
function \(\phi \left (t,T\right )\)
\begin{align*} \frac {\partial \phi }{\partial t } &= M\tag {1} \\ \frac {\partial \phi }{\partial T } &= N\tag {2} \end{align*}
Integrating (1) w.r.t. \(t\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial t} \mathop {\mathrm {d}t} &= \int M\mathop {\mathrm {d}t} \\
\int \frac {\partial \phi }{\partial t} \mathop {\mathrm {d}t} &= \int -\frac {T}{t \sqrt {-T^{2}+t^{2}}}+t\mathop {\mathrm {d}t} \\
\tag{3} \phi &= \frac {t^{2} \sqrt {-T^{2}}+2 T \ln \left (\frac {\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}}{t}\right )+2 T \ln \left (2\right )}{2 \sqrt {-T^{2}}}+ f(T) \\
\end{align*}
Where \(f(T)\) is used for the constant of integration since \(\phi \) is a function
of both \(t\) and \(T\) . Taking derivative of equation (3) w.r.t \(T\) gives
\begin{align*}
\tag{4} \frac {\partial \phi }{\partial T} &= \frac {-\frac {t^{2} T}{\sqrt {-T^{2}}}+2 \ln \left (\frac {\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}}{t}\right )+\frac {2 T \left (-\frac {\sqrt {-T^{2}+t^{2}}\, T}{\sqrt {-T^{2}}}-\frac {\sqrt {-T^{2}}\, T}{\sqrt {-T^{2}+t^{2}}}-2 T \right )}{\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}}+2 \ln \left (2\right )}{2 \sqrt {-T^{2}}}+\frac {\left (t^{2} \sqrt {-T^{2}}+2 T \ln \left (\frac {\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}}{t}\right )+2 T \ln \left (2\right )\right ) T}{2 \left (-T^{2}\right )^{{3}/{2}}}+f'(T) \\
&=\frac {2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-2 T^{2}+t^{2}}{\sqrt {-T^{2}+t^{2}}\, \left (\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}\right )}+f'(T) \\
\end{align*}
But equation (2) says that \(\frac {\partial \phi }{\partial T} = T +\frac {1}{\sqrt {-T^{2}+t^{2}}}\) .
Therefore equation (4) becomes
\begin{equation}
\tag{5} T +\frac {1}{\sqrt {-T^{2}+t^{2}}} = \frac {2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-2 T^{2}+t^{2}}{\sqrt {-T^{2}+t^{2}}\, \left (\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}\right )}+f'(T)
\end{equation}
Solving equation (5) for \( f'(T)\) gives
\begin{align*}
f'(T) &= -\frac {\sqrt {-T^{2}}\, T^{3}-\sqrt {-T^{2}}\, T \,t^{2}+\sqrt {-T^{2}+t^{2}}\, T^{3}+\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}+t^{2}}{\sqrt {-T^{2}+t^{2}}\, \left (\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}\right )} \\
&= \frac {\left (T^{3}+\sqrt {-T^{2}}\right ) \sqrt {-T^{2}+t^{2}}+\left (T -t \right ) \left (T +t \right ) \left (\sqrt {-T^{2}}\, T -1\right )}{\sqrt {-T^{2}+t^{2}}\, \left (T^{2}-\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}\right )}\\
\end{align*}
Integrating the above w.r.t \(T\)
results in
\begin{align*}
\int f'(T) \mathop {\mathrm {d}T} &= \int \left ( \frac {\left (T^{3}+\sqrt {-T^{2}}\right ) \sqrt {-T^{2}+t^{2}}+\left (T -t \right ) \left (T +t \right ) \left (\sqrt {-T^{2}}\, T -1\right )}{\sqrt {-T^{2}+t^{2}}\, \left (T^{2}-\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}\right )}\right ) \mathop {\mathrm {d}T} \\
f(T) &= \frac {\sqrt {-T^{2}}\, \ln \left (T \right )}{T}+\frac {T^{2}}{2}+ c_1 \\
\end{align*}
Where \(c_1\) is constant of integration. Substituting result found above for \(f(T)\) into
equation (3) gives \(\phi \)
\[
\phi = \frac {t^{2} \sqrt {-T^{2}}+2 T \ln \left (\frac {\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}}{t}\right )+2 T \ln \left (2\right )}{2 \sqrt {-T^{2}}}+\frac {\sqrt {-T^{2}}\, \ln \left (T \right )}{T}+\frac {T^{2}}{2}+ c_1
\]
But since \(\phi \) itself is a constant function, then let \(\phi =c_2\) where \(c_2\) is new
constant and combining \(c_1\) and \(c_2\) constants into the constant \(c_1\) gives the solution as
\[
c_1 = \frac {t^{2} \sqrt {-T^{2}}+2 T \ln \left (\frac {\sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}-T^{2}}{t}\right )+2 T \ln \left (2\right )}{2 \sqrt {-T^{2}}}+\frac {\sqrt {-T^{2}}\, \ln \left (T \right )}{T}+\frac {T^{2}}{2}
\]
Figure 2.38: Slope field plot
\(\left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime } = \frac {T}{t \sqrt {t^{2}-T^{2}}}-t\)
Summary of solutions found
\begin{align*}
\frac {t^{2} \sqrt {-T^{2}}+2 T \ln \left (\frac {\sqrt {-T^{2}}\, \sqrt {t^{2}-T^{2}}-T^{2}}{t}\right )+2 T \ln \left (2\right )}{2 \sqrt {-T^{2}}}+\frac {\sqrt {-T^{2}}\, \ln \left (T\right )}{T}+\frac {T^{2}}{2} &= c_1 \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime }=\frac {T}{t \sqrt {t^{2}-T^{2}}}-t \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & T^{\prime } \\ \square & {} & \textrm {Check if ODE is exact}\hspace {3pt} \\ {} & \circ & \textrm {ODE is exact if the lhs is the total derivative of a}\hspace {3pt} C^{2}\hspace {3pt}\textrm {function}\hspace {3pt} \\ {} & {} & F^{\prime }\left (t , T\right )=0 \\ {} & \circ & \textrm {Compute derivative of lhs}\hspace {3pt} \\ {} & {} & F^{\prime }\left (t , T\right )+\left (\frac {\partial }{\partial T}F \left (t , T\right )\right ) T^{\prime }=0 \\ {} & \circ & \textrm {Evaluate derivatives}\hspace {3pt} \\ {} & {} & -\frac {1}{t \sqrt {-T^{2}+t^{2}}}-\frac {T^{2}}{t \left (-T^{2}+t^{2}\right )^{{3}/{2}}}=-\frac {t}{\left (-T^{2}+t^{2}\right )^{{3}/{2}}} \\ {} & \circ & \textrm {Simplify}\hspace {3pt} \\ {} & {} & -\frac {t}{\left (-T^{2}+t^{2}\right )^{{3}/{2}}}=-\frac {t}{\left (-T^{2}+t^{2}\right )^{{3}/{2}}} \\ {} & \circ & \textrm {Condition met, ODE is exact}\hspace {3pt} \\ \bullet & {} & \textrm {Exact ODE implies solution will be of this form}\hspace {3pt} \\ {} & {} & \left [F \left (t , T\right )=\mathit {C1} , M \left (t , T\right )=F^{\prime }\left (t , T\right ), N \left (t , T\right )=\frac {\partial }{\partial T}F \left (t , T\right )\right ] \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} F \left (t , T\right )\hspace {3pt}\textrm {by integrating}\hspace {3pt} M \left (t , T\right )\hspace {3pt}\textrm {with respect to}\hspace {3pt} t \\ {} & {} & F \left (t , T\right )=\int \left (-\frac {T}{t \sqrt {-T^{2}+t^{2}}}+t \right )d t +\textit {\_F1} \left (T \right ) \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & F \left (t , T\right )=\frac {t^{2}}{2}+\frac {T \ln \left (\frac {-2 T^{2}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}}{t}\right )}{\sqrt {-T^{2}}}+\textit {\_F1} \left (T \right ) \\ \bullet & {} & \textrm {Take derivative of}\hspace {3pt} F \left (t , T\right )\hspace {3pt}\textrm {with respect to}\hspace {3pt} T \\ {} & {} & N \left (t , T\right )=\frac {\partial }{\partial T}F \left (t , T\right ) \\ \bullet & {} & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & T +\frac {1}{\sqrt {-T^{2}+t^{2}}}=\frac {\ln \left (\frac {-2 T^{2}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}}{t}\right )}{\sqrt {-T^{2}}}+\frac {T^{2} \ln \left (\frac {-2 T^{2}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}}{t}\right )}{\left (-T^{2}\right )^{{3}/{2}}}+\frac {T \left (-4 T -\frac {2 \sqrt {-T^{2}+t^{2}}\, T}{\sqrt {-T^{2}}}-\frac {2 \sqrt {-T^{2}}\, T}{\sqrt {-T^{2}+t^{2}}}\right )}{\sqrt {-T^{2}}\, \left (-2 T^{2}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}\right )}+\frac {d}{d T}\textit {\_F1} \left (T \right ) \\ \bullet & {} & \textrm {Isolate for}\hspace {3pt} \frac {d}{d T}\textit {\_F1} \left (T \right ) \\ {} & {} & \frac {d}{d T}\textit {\_F1} \left (T \right )=T +\frac {1}{\sqrt {-T^{2}+t^{2}}}-\frac {\ln \left (\frac {-2 T^{2}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}}{t}\right )}{\sqrt {-T^{2}}}-\frac {T^{2} \ln \left (\frac {-2 T^{2}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}}{t}\right )}{\left (-T^{2}\right )^{{3}/{2}}}-\frac {T \left (-4 T -\frac {2 \sqrt {-T^{2}+t^{2}}\, T}{\sqrt {-T^{2}}}-\frac {2 \sqrt {-T^{2}}\, T}{\sqrt {-T^{2}+t^{2}}}\right )}{\sqrt {-T^{2}}\, \left (-2 T^{2}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}\right )} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_F1} \left (T \right ) \\ {} & {} & \textit {\_F1} \left (T \right )=\frac {\left (-T^{2}\right )^{{3}/{2}} T^{4}+T^{6} \sqrt {-T^{2}}-2 \sqrt {-T^{2}}\, T^{4} t^{2}+2 \arctan \left (\frac {T}{\sqrt {-T^{2}+t^{2}}}\right ) \left (-T^{2}\right )^{{3}/{2}} t^{2}+2 \arctan \left (\frac {T}{\sqrt {-T^{2}+t^{2}}}\right ) \sqrt {-T^{2}}\, T^{2} t^{2}+4 \ln \left (T \right ) t^{2} T^{3}+2 T \sqrt {-T^{2}+t^{2}}\, \left (-T^{2}\right )^{{3}/{2}}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}\, T^{3}}{4 \left (-T^{2}\right )^{{3}/{2}} t^{2}} \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \textit {\_F1} \left (T \right )\hspace {3pt}\textrm {into equation for}\hspace {3pt} F \left (t , T\right ) \\ {} & {} & F \left (t , T\right )=\frac {t^{2}}{2}+\frac {T \ln \left (\frac {-2 T^{2}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}}{t}\right )}{\sqrt {-T^{2}}}+\frac {\left (-T^{2}\right )^{{3}/{2}} T^{4}+T^{6} \sqrt {-T^{2}}-2 \sqrt {-T^{2}}\, T^{4} t^{2}+2 \arctan \left (\frac {T}{\sqrt {-T^{2}+t^{2}}}\right ) \left (-T^{2}\right )^{{3}/{2}} t^{2}+2 \arctan \left (\frac {T}{\sqrt {-T^{2}+t^{2}}}\right ) \sqrt {-T^{2}}\, T^{2} t^{2}+4 \ln \left (T \right ) t^{2} T^{3}+2 T \sqrt {-T^{2}+t^{2}}\, \left (-T^{2}\right )^{{3}/{2}}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}\, T^{3}}{4 \left (-T^{2}\right )^{{3}/{2}} t^{2}} \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} F \left (t , T\right )\hspace {3pt}\textrm {into the solution of the ODE}\hspace {3pt} \\ {} & {} & \frac {t^{2}}{2}+\frac {T \ln \left (\frac {-2 T^{2}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}}{t}\right )}{\sqrt {-T^{2}}}+\frac {\left (-T^{2}\right )^{{3}/{2}} T^{4}+T^{6} \sqrt {-T^{2}}-2 \sqrt {-T^{2}}\, T^{4} t^{2}+2 \arctan \left (\frac {T}{\sqrt {-T^{2}+t^{2}}}\right ) \left (-T^{2}\right )^{{3}/{2}} t^{2}+2 \arctan \left (\frac {T}{\sqrt {-T^{2}+t^{2}}}\right ) \sqrt {-T^{2}}\, T^{2} t^{2}+4 \ln \left (T \right ) t^{2} T^{3}+2 T \sqrt {-T^{2}+t^{2}}\, \left (-T^{2}\right )^{{3}/{2}}+2 \sqrt {-T^{2}}\, \sqrt {-T^{2}+t^{2}}\, T^{3}}{4 \left (-T^{2}\right )^{{3}/{2}} t^{2}}=\mathit {C1} \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
<- exact successful `
Maple dsolve solution
Solving time : 0.003
(sec)
Leaf size : 79
dsolve (( T ( t )+1/( t ^2- T ( t )^2)^(1/2))* diff ( T ( t ), t ) = T(t)/t/(t^2-T(t)^2)^(1/2)-t,
T(t),singsol=all)
\[
\frac {\left (\frac {t^{2}}{2}+\frac {T^{2}}{2}+c_1 \right ) \sqrt {-T^{2}}+T \left (\ln \left (\frac {\sqrt {-T^{2}}\, \sqrt {t^{2}-T^{2}}-T^{2}}{t}\right )+\ln \left (2\right )-\ln \left (T\right )\right )}{\sqrt {-T^{2}}} = 0
\]
Mathematica DSolve solution
Solving time : 1.545
(sec)
Leaf size : 44
DSolve [{( T [ t ]+1/ Sqrt [ t ^2- T [ t ]^2])* D [ T [ t ], t ]== T[t]/(t* Sqrt [t^2-T[t]^2])-t,{}},
T[t],t,IncludeSingularSolutions-> True ]
\[
\text {Solve}\left [-\arctan \left (\frac {\sqrt {t^2-T(t)^2}}{T(t)}\right )+\frac {t^2}{2}+\frac {T(t)^2}{2}=c_1,T(t)\right ]
\]