Internal
problem
ID
[11247] Book
:
Collection
of
Kovacic
problems Section
:
section
1 Problem
number
:
809 Date
solved
:
Monday, December 08, 2025 at 10:33:19 PM CAS
classification
:
[[_2nd_order, _missing_x]]
2.1.787.1 Solved as second order ode using Kovacic algorithm
\begin{align*} u^{\prime \prime }+2 u^{\prime }+u &= 0 \tag {1} \\ A u^{\prime \prime } + B u^{\prime } + C u &= 0 \tag {2} \end{align*}
Comparing (1) and (2) shows that
\begin{align*} A &= 1 \\ B &= 2\tag {3} \\ C &= 1 \end{align*}
Applying the Liouville transformation on the dependent variable gives
\begin{align*} z(x) &= u e^{\int \frac {B}{2 A} \,dx} \end{align*}
Then (2) becomes
\begin{align*} z''(x) = r z(x)\tag {4} \end{align*}
Where \(r\) is given by
\begin{align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end{align*}
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
\begin{align*} r &= \frac {0}{1}\tag {6} \end{align*}
Comparing the above to (5) shows that
\begin{align*} s &= 0\\ t &= 1 \end{align*}
Therefore eq. (4) becomes
\begin{align*} z''(x) &= 0 \tag {7} \end{align*}
Equation (7) is now solved. After finding \(z(x)\) then \(u\) is found using the inverse transformation
\begin{align*} u &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end{align*}
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases
depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these
cases.
Need to have at least one pole
that is either order \(2\) or odd order
greater than \(2\). Any other pole order
is allowed as long as the above
condition is satisfied. Hence the
following set of pole orders are all
allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\).
no condition
3
\(\left \{ 1,2\right \} \)
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \)
Table 2.787: Necessary conditions for each Kovacic case
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore
There are no poles in \(r\). Therefore the set of poles \(\Gamma \) is empty. Since there is no odd order pole
larger than \(2\) and the order at \(\infty \) is \(infinity\) then the necessary conditions for case one are met. Therefore
\begin{align*} L &= [1] \end{align*}
Since \(r = 0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for
transformed ode \(z''=r z\) as one solution is
\[ z_1(x) = 1 \]
Using the above, the solution for the original ode can now be
found. The first solution to the original ode in \(u\) is found from
\[
u = {\mathrm e}^{-x} \left (c_2 x +c_1 \right )
\]
Maple trace
Methodsfor second order ODEs:---Trying classification methods ---tryinga quadraturecheckingif the LODE has constant coefficients<-constant coefficients successful