2.18 Example 18 \(y=xy^{\prime }+ay^{\prime }\left ( 1-y^{\prime }\right ) \)

\begin{align*} y & =xy^{\prime }+ay^{\prime }\left ( 1-y^{\prime }\right ) \\ y & =xp+ap\left ( 1-p\right ) \\ F & =xp+ap-ap^{2}-y\\ & =-ap^{2}+p\left ( a+x\right ) -y\\ & =0 \end{align*}

We first check that \(\frac {\partial F}{\partial y}=-1\neq 0\). This is quadratic in \(p\).

\begin{align*} b^{2}-4ac & =0\\ \left ( a+x\right ) ^{2}-4\left ( -a\right ) \left ( -y\right ) & =0\\ \left ( a+x\right ) ^{2}-4ay & =0\\ y & =\frac {\left ( x+a\right ) ^{2}}{4a}\qquad a\neq 0 \end{align*}

Now we check if this satisfies the ode itself. We see it does. The general solution can be found to be

\begin{align*} \Psi \left ( x,y,c\right ) & =y-cx-ac\left ( 1-c\right ) \\ & =y-cx-ac+ac^{2}\\ & =y-c\left ( x+a\right ) +ac^{2}\\ & =0 \end{align*}

This is quadratic in \(c\).

\begin{align*} b^{2}-4aC & =0\\ \left ( x+a\right ) ^{2}-4\left ( a\right ) \left ( y\right ) & =0\\ y & =\frac {\left ( x+a\right ) ^{2}}{4a}\qquad a\neq 0 \end{align*}

Which is the same obtained using p-discriminant. Hence this is the singular solution. The following plot shows the singular solution as the envelope of the family of general solution plotted using different values of \(c\). For this, \(a=1\) was used.