2.10 Example 10 \(\left ( y^{\prime }\right ) ^{2}-xy^{\prime }+y=0\)

\begin{align*} \left ( y^{\prime }\right ) ^{2}-xy^{\prime }+y & =0\\ p^{2}-xp+y & =0\\ F & =p^{2}-xp+y\\ & =0 \end{align*}

We first check that \(\frac {\partial F}{\partial y}=1\neq 0\). This is quadratic in \(p\).

\begin{align*} b^{2}-4ac & =0\\ \left ( -x\right ) ^{2}-4\left ( 1\right ) \left ( y\right ) & =0\\ x^{2}-4y & =0\\ y & =\frac {x^{2}}{4}\end{align*}

This also satisfies the ode. Hence it is \(E\). Now we check using p-discriminant method. General solution can be found to be

\[ \Psi \left ( x,y,c\right ) =y-xc+c^{2}=0 \]

This is quadratic in \(c\).

\begin{align*} b^{2}-4aC & =0\\ \left ( -x\right ) ^{2}-4\left ( 1\right ) \left ( y\right ) & =0\\ x^{2}-4y & =0\\ y & =\frac {x^{2}}{4}\end{align*}

This is the same as \(y\) obtained using p-discriminant method then it is singular solution. The following plot shows the singular solution as the envelope of the family of general solution plotted using different values of \(c\).