ODE No. 701

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ y'(x)=\frac {x^4+x^4 \log (x)-2 x^2 y(x)-2 x^2 y(x) \log (x)+y(x)^2+y(x)^2 \log (x)+2 e^x x-2 x-\log (x)-1}{e^x-1} \] Mathematica : cpu = 3599.95 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 6.091 (sec), leaf count = 71

\[ \left \{ y \left ( x \right ) ={1 \left ( -{x}^{2} \left ( {{\rm e}^{\int \!{\frac {\ln \left ( x \right ) +1}{{{\rm e}^{x}}-1}}\,{\rm d}x}} \right ) ^{2}+{\it \_C1}\,{x}^{2}+ \left ( {{\rm e}^{\int \!{\frac {\ln \left ( x \right ) +1}{{{\rm e}^{x}}-1}}\,{\rm d}x}} \right ) ^{2}+{\it \_C1} \right ) \left ( - \left ( {{\rm e}^{\int \!{\frac {\ln \left ( x \right ) +1}{{{\rm e}^{x}}-1}}\,{\rm d}x}} \right ) ^{2}+{\it \_C1} \right ) ^{-1}} \right \} \]