\[ y'(x)=\frac {x \left (12 e^{-x^2} x^2 y(x)^2+8 e^{-x^2} x^2 y(x)-8 e^{-x^2} y(x)+4 e^{-2 x^2} x^2+8 e^{-x^2} x^2-8 e^{-x^2}+e^{-3 x^2} x^6-6 e^{-2 x^2} x^4 y(x)-4 e^{-2 x^2} x^4-8 y(x)^3\right )}{4 e^{-x^2} x^2-8 y(x)-8} \] ✓ Mathematica : cpu = 0.0905033 (sec), leaf count = 115
\[\left \{\left \{y(x)\to \frac {e^{-x^2} \left (x^2 \left (\sqrt {c_1-64 x^2}-8\right )+16 e^{x^2}\right )}{2 \left (\sqrt {c_1-64 x^2}-8\right )}\right \},\left \{y(x)\to \frac {e^{-x^2} \left (x^2 \left (\sqrt {c_1-64 x^2}+8\right )-16 e^{x^2}\right )}{2 \left (\sqrt {c_1-64 x^2}+8\right )}\right \}\right \}\]
✓ Maple : cpu = 0.187 (sec), leaf count = 85
\[ \left \{ y \left ( x \right ) ={1 \left ( -2+{x}^{2} \left ( 1+\sqrt {-{x}^{2}+{\it \_C1}} \right ) {{\rm e}^{-{x}^{2}}} \right ) \left ( 2\,\sqrt {-{x}^{2}+{\it \_C1}}+2 \right ) ^{-1}},y \left ( x \right ) ={1 \left ( 2+{x}^{2} \left ( -1+\sqrt {-{x}^{2}+{\it \_C1}} \right ) {{\rm e}^{-{x}^{2}}} \right ) \left ( 2\,\sqrt {-{x}^{2}+{\it \_C1}}-2 \right ) ^{-1}} \right \} \]