\[ y'(x)=\frac {2 x^5+2 x^4-2 x^3 y(x)+x^3-2 x^2 y(x)+3 x^2-2 y(x)-x+1}{x^2-y(x)} \] ✓ Mathematica : cpu = 0.0356223 (sec), leaf count = 42
\[\left \{\left \{y(x)\to \frac {1}{2} \left (W\left (-e^{c_1+x^4+\frac {4 x^3}{3}-2 x^2+4 x-1}\right )+1\right )+x^2\right \}\right \}\]
✓ Maple : cpu = 0.083 (sec), leaf count = 37
\[ \left \{ y \left ( x \right ) ={x}^{2}+{\frac {1}{2}{\it lambertW} \left ( -2\,{\frac {{{\rm e}^{{x}^{4}}}{{\rm e}^{4/3\,{x}^{3}}}{\it \_C1}\, \left ( {{\rm e}^{x}} \right ) ^{4}{{\rm e}^{-1}}}{ \left ( {{\rm e}^{{x}^{2}}} \right ) ^{2}}} \right ) }+{\frac {1}{2}} \right \} \]