\[ \boxed { f \left ( x \right ) y \left ( x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +g \left ( x \right ) \left ( y \left ( x \right ) \right ) ^{2}+h \left ( x \right ) =0} \]
Mathematica: cpu = 1.005128 (sec), leaf count = 140 \[ \left \{\left \{y(x)\to -e^{\int _1^x -\frac {g(K[1])}{f(K[1])} \, dK[1]} \sqrt {2 \int _1^x -\frac {h(K[2]) \exp \left (-2 \int _1^{K[2]} -\frac {g(K[1])}{f(K[1])} \, dK[1]\right )}{f(K[2])} \, dK[2]+c_1}\right \},\left \{y(x)\to e^{\int _1^x -\frac {g(K[1])}{f(K[1])} \, dK[1]} \sqrt {2 \int _1^x -\frac {h(K[2]) \exp \left (-2 \int _1^{K[2]} -\frac {g(K[1])}{f(K[1])} \, dK[1]\right )}{f(K[2])} \, dK[2]+c_1}\right \}\right \} \]
Maple: cpu = 0.063 (sec), leaf count = 124 \[ \left \{ y \left ( x \right ) ={1\sqrt {-{{\rm e}^{2\,\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \left ( 2\,\int \!{\frac {h \left ( x \right ) }{f \left ( x \right ) } \left ( {{\rm e}^{ \int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) ^{2}}\,{\rm d}x-{\it \_C1} \right ) } \left ( {{\rm e}^{2\, \int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) ^{-1}},y \left ( x \right ) =-{1\sqrt {-{{\rm e}^{2\,\int \!{ \frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \left ( 2 \,\int \!{\frac {h \left ( x \right ) }{f \left ( x \right ) } \left ( { {\rm e}^{\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }} \,{\rm d}x}} \right ) ^{2}}\,{\rm d}x-{\it \_C1} \right ) } \left ( { {\rm e}^{2\,\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }} \,{\rm d}x}} \right ) ^{-1}} \right \} \]