\[ \text {Global$\grave { }$a}^2 \text {Global$\grave { }$y}(\text {Global$\grave { }$x})^2 \left (\log ^2(\text {Global$\grave { }$y}(\text {Global$\grave { }$x}))-1\right )+\text {Global$\grave { }$y}'(\text {Global$\grave { }$x})^2=0 \] ✓ Mathematica : cpu = 0.0970531 (sec), leaf count = 71
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to e^{\frac {1}{2} \left (e^{-c_1+i \text {Global$\grave { }$a} \text {Global$\grave { }$x}}+e^{c_1-i \text {Global$\grave { }$a} \text {Global$\grave { }$x}}\right )}\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \exp \left (\frac {1}{2} \left (e^{-c_1-i \text {Global$\grave { }$a} \text {Global$\grave { }$x}}+e^{c_1+i \text {Global$\grave { }$a} \text {Global$\grave { }$x}}\right )\right )\right \}\right \}\]
✓ Maple : cpu = 0.412 (sec), leaf count = 47
\[ \left \{ y \left ( x \right ) = \left ( {{\rm e}^{\sin \left ( {\it \_C1}\,a-ax \right ) }} \right ) ^{-1},y \left ( x \right ) ={{\rm e}^{{\it RootOf} \left ( {a}^{2} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2} \left ( {{\it \_Z}}^{2}-1 \right ) \right ) }},y \left ( x \right ) ={{\rm e}^{\sin \left ( {\it \_C1}\,a-ax \right ) }} \right \} \]