2.990 ODE No. 990
\[ y'(x)=2 x-F(x) \left (-x^4+2 x^2 y(x)-y(x)^2+1\right ) \]
✓ Mathematica : cpu = 0.125916 (sec), leaf count = 58
DSolve[Derivative[1][y][x] == 2*x - F[x]*(1 - x^4 + 2*x^2*y[x] - y[x]^2),y[x],x]
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x2 F(K[5])dK[5]\right )}{-\int _1^x\exp \left (\int _1^{K[6]}2 F(K[5])dK[5]\right ) F(K[6])dK[6]+c_1}+x^2+1\right \}\right \}\]
✓ Maple : cpu = 0.849 (sec), leaf count = 44
dsolve(diff(y(x),x) = -F(x)*(-y(x)^2+2*x^2*y(x)+1-x^4)+2*x,y(x))
\[y \left (x \right ) = \frac {-x^{2} {\mathrm e}^{\int 2 F \left (x \right )d x}+c_{1} x^{2}+{\mathrm e}^{\int 2 F \left (x \right )d x}+c_{1}}{-{\mathrm e}^{\int 2 F \left (x \right )d x}+c_{1}}\]