2.975   ODE No. 975

\[ y'(x)=\frac {x^6}{27}+\frac {1}{3} x^4 y(x)+x^2 y(x)^2+y(x)^3-\frac {2 x}{3} \]

Mathematica : cpu = 0.0700305 (sec), leaf count = 47

DSolve[Derivative[1][y][x] == (-2*x)/3 + x^6/27 + (x^4*y[x])/3 + x^2*y[x]^2 + y[x]^3,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {x^2}{3}-\frac {1}{\sqrt {-2 x+c_1}}\right \},\left \{y(x)\to -\frac {x^2}{3}+\frac {1}{\sqrt {-2 x+c_1}}\right \}\right \}\]

Maple : cpu = 0.05 (sec), leaf count = 59

dsolve(diff(y(x),x) = y(x)^3+y(x)^2*x^2+1/3*y(x)*x^4+1/27*x^6-2/3*x,y(x))
 
\[y \left (x \right ) = -\frac {x^{2} \sqrt {-54 c_{1} -2 x}-3}{3 \sqrt {-54 c_{1} -2 x}}\]