2.969   ODE No. 969

\[ y'(x)=\frac {\csc \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{x}\right ) \left (-\frac {1}{2} x y(x) \sin \left (\frac {y(x)}{x}\right )-\frac {1}{2} y(x) \sin \left (\frac {y(x)}{x}\right )+x \sin \left (\frac {y(x)}{2 x}\right ) \sin \left (\frac {y(x)}{x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} x y(x) \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} y(x) \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} x y(x) \sin \left (\frac {3 y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+\frac {1}{2} y(x) \sin \left (\frac {3 y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )\right )}{x (x+1)} \]

Mathematica : cpu = 0.17878 (sec), leaf count = 19

DSolve[Derivative[1][y][x] == (Csc[y[x]/(2*x)]*Sec[y[x]/(2*x)]*Sec[y[x]/x]*(x*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*Sin[y[x]/x] + (Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*y[x])/2 + (x*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*y[x])/2 - (Sin[y[x]/x]*y[x])/2 - (x*Sin[y[x]/x]*y[x])/2 + (Cos[y[x]/(2*x)]*Sin[(3*y[x])/(2*x)]*y[x])/2 + (x*Cos[y[x]/(2*x)]*Sin[(3*y[x])/(2*x)]*y[x])/2))/(x*(1 + x)),y[x],x]
 
\[\left \{\left \{y(x)\to x \sin ^{-1}\left (\frac {e^{c_1} x}{x+1}\right )\right \}\right \}\]

Maple : cpu = 0.262 (sec), leaf count = 26

dsolve(diff(y(x),x) = 1/2*(y(x)*sin(3/2*y(x)/x)*cos(1/2*y(x)/x)*x+y(x)*sin(3/2*y(x)/x)*cos(1/2*y(x)/x)+y(x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)*x+y(x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)-sin(y(x)/x)*y(x)*x-y(x)*sin(y(x)/x)+2*sin(y(x)/x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)*x)/cos(y(x)/x)/sin(1/2*y(x)/x)/x/cos(1/2*y(x)/x)/(1+x),y(x))
 
\[y \left (x \right ) = \frac {\arccos \left (\frac {1+\left (c_{1} +1\right ) x^{2}+2 x}{\left (1+x \right )^{2}}\right ) x}{2}\]