2.948 ODE No. 948
\[ y'(x)=-\frac {216 y(x)}{36 x^2+4 y(x)^8+12 y(x)^7+33 y(x)^6+60 y(x)^5-24 x y(x)^4-216 y(x)^4-36 x y(x)^3-252 y(x)^3-72 x y(x)^2-396 y(x)^2-72 x y(x)-216 y(x)} \]
✓ Mathematica : cpu = 0.457507 (sec), leaf count = 39
DSolve[Derivative[1][y][x] == (-216*y[x])/(36*x^2 - 216*y[x] - 72*x*y[x] - 396*y[x]^2 - 72*x*y[x]^2 - 252*y[x]^3 - 36*x*y[x]^3 - 216*y[x]^4 - 24*x*y[x]^4 + 60*y[x]^5 + 33*y[x]^6 + 12*y[x]^7 + 4*y[x]^8),y[x],x]
\[\text {Solve}\left [\frac {36}{y(x) \left (2 y(x)^3+3 y(x)^2+6 y(x)+6\right )-6 x}+\log (y(x))=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.263 (sec), leaf count = 68
dsolve(diff(y(x),x) = -216*y(x)/(-216*y(x)^4-252*y(x)^3-396*y(x)^2-216*y(x)+36*x^2-72*x*y(x)+60*y(x)^5-36*x*y(x)^3-72*x*y(x)^2-24*x*y(x)^4+4*y(x)^8+12*y(x)^7+33*y(x)^6),y(x))
\[y \left (x \right ) = {\mathrm e}^{\operatorname {RootOf}\left (12 c_{1} {\mathrm e}^{4 \textit {\_Z}}+2 \,{\mathrm e}^{4 \textit {\_Z}} \textit {\_Z} +18 c_{1} {\mathrm e}^{3 \textit {\_Z}}+3 \,{\mathrm e}^{3 \textit {\_Z}} \textit {\_Z} +36 c_{1} {\mathrm e}^{2 \textit {\_Z}}+6 \textit {\_Z} \,{\mathrm e}^{2 \textit {\_Z}}+36 c_{1} {\mathrm e}^{\textit {\_Z}}+6 \textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}-36 x c_{1} -6 x \textit {\_Z} +36\right )}\]