2.941   ODE No. 941

\[ y'(x)=\frac {x^6-12 x^5+12 x^4 y(x)+48 x^4-96 x^3 y(x)-72 x^3+48 x^2 y(x)^2+192 x^2 y(x)+32 x^2-192 x y(x)^2-32 x y(x)+64 y(x)^3-32 x}{16 x^2+64 y(x)-64 x+64} \]

Mathematica : cpu = 0.281339 (sec), leaf count = 53

DSolve[Derivative[1][y][x] == (-32*x + 32*x^2 - 72*x^3 + 48*x^4 - 12*x^5 + x^6 - 32*x*y[x] + 192*x^2*y[x] - 96*x^3*y[x] + 12*x^4*y[x] - 192*x*y[x]^2 + 48*x^2*y[x]^2 + 64*y[x]^3)/(64 - 64*x + 16*x^2 + 64*y[x]),y[x],x]
 
\[\text {Solve}\left [x-8 \text {RootSum}\left [11776 \text {$\#$1}^3-40 \text {$\#$1}-1\& ,\text {$\#$1} \log \left (17664 \text {$\#$1}^2-1472 \text {$\#$1}+11 x^2+44 y(x)-44 x-40\right )\& \right ]=c_1,y(x)\right ]\]

Maple : cpu = 0.067 (sec), leaf count = 35

dsolve(diff(y(x),x) = (-32*x*y(x)-72*x^3+32*x^2-32*x+64*y(x)^3+48*y(x)^2*x^2-192*x*y(x)^2+12*y(x)*x^4-96*x^3*y(x)+192*x^2*y(x)+x^6-12*x^5+48*x^4)/(64*y(x)+16*x^2-64*x+64),y(x))
 
\[y \left (x \right ) = -\frac {x^{2}}{4}+x +\operatorname {RootOf}\left (-x +\int _{}^{\textit {\_Z}}\frac {\textit {\_a} +1}{\textit {\_a}^{3}-\textit {\_a} -1}d \textit {\_a} +c_{1} \right )\]