2.933   ODE No. 933

\[ y'(x)=\frac {x^3+x^3 \left (-\log ^3(x)\right )+x^3 \log ^2(x)+3 x^2 y(x) \log ^2(x)-2 x^2 y(x) \log (x)+x^2+x y(x)^2+x y(x)+y(x)^3-3 x y(x)^2 \log (x)}{x^2} \]

Mathematica : cpu = 1.19468 (sec), leaf count = 99

DSolve[Derivative[1][y][x] == (x^2 + x^3 + x^3*Log[x]^2 - x^3*Log[x]^3 + x*y[x] - 2*x^2*Log[x]*y[x] + 3*x^2*Log[x]^2*y[x] + x*y[x]^2 - 3*x*Log[x]*y[x]^2 + y[x]^3)/x^2,y[x],x]
 
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {\frac {3 y(x)}{x^2}+\frac {1-3 \log (x)}{x}}{\sqrt [3]{29} \sqrt [3]{\frac {1}{x^3}}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {29^{2/3}}{9 \sqrt [3]{\frac {1}{x^3}}}+c_1,y(x)\right ]\]

Maple : cpu = 0.095 (sec), leaf count = 39

dsolve(diff(y(x),x) = -(-x^2-x*y(x)-x^3-x*y(x)^2+2*y(x)*x^2*ln(x)-x^3*ln(x)^2-y(x)^3+3*x*y(x)^2*ln(x)-3*x^2*ln(x)^2*y(x)+x^3*ln(x)^3)/x^2,y(x))
 
\[y \left (x \right ) = \frac {x \left (9 \ln \left (x \right )-3+29 \operatorname {RootOf}\left (-81 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+x +3 c_{1} \right )\right )}{9}\]