2.931   ODE No. 931

\[ y'(x)=\frac {x^6+3 x^5 y(x)+3 x^4 y(x)^2+x^3 y(x)^3-2 x^3-3 x^2 y(x)-x y(x)^2-y(x)-2 x}{x \left (x^2+x y(x)+1\right )} \]

Mathematica : cpu = 0.1333 (sec), leaf count = 80

DSolve[Derivative[1][y][x] == (-2*x - 2*x^3 + x^6 - y[x] - 3*x^2*y[x] + 3*x^5*y[x] - x*y[x]^2 + 3*x^4*y[x]^2 + x^3*y[x]^3)/(x*(1 + x^2 + x*y[x])),y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {x^2+1}{x}+\frac {1}{x^2 \left (\frac {1}{x}-\frac {1}{x \sqrt {-2 x+c_1}}\right )}\right \},\left \{y(x)\to -\frac {x^2+1}{x}+\frac {1}{x^2 \left (\frac {1}{x}+\frac {1}{x \sqrt {-2 x+c_1}}\right )}\right \}\right \}\]

Maple : cpu = 0.051 (sec), leaf count = 73

dsolve(diff(y(x),x) = (-3*x^2*y(x)-2*x^3-2*x-x*y(x)^2-y(x)+x^3*y(x)^3+3*y(x)^2*x^4+3*x^5*y(x)+x^6)/x/(x*y(x)+x^2+1),y(x))
 
\[y \left (x \right ) = \frac {-\sqrt {c_{1} -2 x}\, x^{2}+x^{2}+1}{\left (\sqrt {c_{1} -2 x}-1\right ) x}\]