2.93 ODE No. 93
\[ x y'(x)-y(x)-\frac {x \cos (\log (\log (x)))}{\log (x)}=0 \]
✓ Mathematica : cpu = 0.0375532 (sec), leaf count = 16
DSolve[-((x*Cos[Log[Log[x]]])/Log[x]) - y[x] + x*Derivative[1][y][x] == 0,y[x],x]
\[\{\{y(x)\to x \sin (\log (\log (x)))+c_1 x\}\}\]
✓ Maple : cpu = 0.035 (sec), leaf count = 12
dsolve(x*diff(y(x),x)-y(x)-x*cos(ln(ln(x)))/ln(x) = 0,y(x))
\[y \left (x \right ) = \left (\sin \left (\ln \left (\ln \left (x \right )\right )\right )+c_{1} \right ) x\]