2.910   ODE No. 910

\[ y'(x)=\frac {x^6+3 x^5 y(x)+3 x^4 y(x)^2+x^4+x^3 y(x)^3+2 x^3 y(x)+x^2 y(x)^2-y(x)-2 x+1}{x} \]

Mathematica : cpu = 1.15985 (sec), leaf count = 98

DSolve[Derivative[1][y][x] == (1 - 2*x + x^4 + x^6 - y[x] + 2*x^3*y[x] + 3*x^5*y[x] + x^2*y[x]^2 + 3*x^4*y[x]^2 + x^3*y[x]^3)/x,y[x],x]
 
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {3 x^3+3 x^2 y(x)+x}{\sqrt [3]{29} \sqrt [3]{x^3}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {29^{2/3} \left (x^3\right )^{2/3}}{9 x}+c_1,y(x)\right ]\]

Maple : cpu = 0.057 (sec), leaf count = 42

dsolve(diff(y(x),x) = (-2*x-y(x)+1+y(x)^2*x^2+2*x^3*y(x)+x^4+x^3*y(x)^3+3*y(x)^2*x^4+3*x^5*y(x)+x^6)/x,y(x))
 
\[y \left (x \right ) = \frac {-9 x^{2}+29 \operatorname {RootOf}\left (-81 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+x +3 c_{1} \right )-3}{9 x}\]