2.91   ODE No. 91

\[ x y'(x)-y(x)-\frac {x}{\log (x)}=0 \]

Mathematica : cpu = 0.0241953 (sec), leaf count = 15

DSolve[-(x/Log[x]) - y[x] + x*Derivative[1][y][x] == 0,y[x],x]
 
\[\{\{y(x)\to x \log (\log (x))+c_1 x\}\}\]

Maple : cpu = 0.007 (sec), leaf count = 11

dsolve(x*diff(y(x),x)-y(x)-x/ln(x) = 0,y(x))
 
\[y \left (x \right ) = \left (\ln \left (\ln \left (x \right )\right )+c_{1} \right ) x\]