2.900 ODE No. 900
\[ y'(x)=\frac {2 a \left (4 a x-y(x)^2-1\right )}{128 a^4 x^3-96 a^3 x^2 y(x)^2+24 a^2 x y(x)^4-2 a y(x)^6+4 a x y(x)-y(x)^3-y(x)} \]
✓ Mathematica : cpu = 0.14472 (sec), leaf count = 381
DSolve[Derivative[1][y][x] == (2*a*(-1 + 4*a*x - y[x]^2))/(128*a^4*x^3 - y[x] + 4*a*x*y[x] - 96*a^3*x^2*y[x]^2 - y[x]^3 + 24*a^2*x*y[x]^4 - 2*a*y[x]^6),y[x],x]
\[\left \{\left \{y(x)\to \text {Root}\left [8 \text {$\#$1}^5 a-16 \text {$\#$1}^4 a^2 c_1-64 \text {$\#$1}^3 a^2 x+\text {$\#$1}^2 \left (-2+128 a^3 c_1 x\right )+128 \text {$\#$1} a^3 x^2-256 a^4 c_1 x^2+8 a x-1\& ,1\right ]\right \},\left \{y(x)\to \text {Root}\left [8 \text {$\#$1}^5 a-16 \text {$\#$1}^4 a^2 c_1-64 \text {$\#$1}^3 a^2 x+\text {$\#$1}^2 \left (-2+128 a^3 c_1 x\right )+128 \text {$\#$1} a^3 x^2-256 a^4 c_1 x^2+8 a x-1\& ,2\right ]\right \},\left \{y(x)\to \text {Root}\left [8 \text {$\#$1}^5 a-16 \text {$\#$1}^4 a^2 c_1-64 \text {$\#$1}^3 a^2 x+\text {$\#$1}^2 \left (-2+128 a^3 c_1 x\right )+128 \text {$\#$1} a^3 x^2-256 a^4 c_1 x^2+8 a x-1\& ,3\right ]\right \},\left \{y(x)\to \text {Root}\left [8 \text {$\#$1}^5 a-16 \text {$\#$1}^4 a^2 c_1-64 \text {$\#$1}^3 a^2 x+\text {$\#$1}^2 \left (-2+128 a^3 c_1 x\right )+128 \text {$\#$1} a^3 x^2-256 a^4 c_1 x^2+8 a x-1\& ,4\right ]\right \},\left \{y(x)\to \text {Root}\left [8 \text {$\#$1}^5 a-16 \text {$\#$1}^4 a^2 c_1-64 \text {$\#$1}^3 a^2 x+\text {$\#$1}^2 \left (-2+128 a^3 c_1 x\right )+128 \text {$\#$1} a^3 x^2-256 a^4 c_1 x^2+8 a x-1\& ,5\right ]\right \}\right \}\]
✓ Maple : cpu = 0.09 (sec), leaf count = 48
dsolve(diff(y(x),x) = 2*a*(-y(x)^2+4*a*x-1)/(-y(x)^3+4*a*x*y(x)-y(x)-2*a*y(x)^6+24*y(x)^4*a^2*x-96*y(x)^2*a^3*x^2+128*a^4*x^3),y(x))
\[\frac {y \left (x \right )}{2 a}-\frac {1}{16 a^{2} \left (y \left (x \right )^{2}-4 a x \right )^{2}}+\frac {1}{32 a^{3} x -8 a^{2} y \left (x \right )^{2}}-c_{1} = 0\]