2.880 ODE No. 880
\[ y'(x)=-\frac {2 a}{128 a^4 x^3-96 a^3 x^2 y(x)^2-32 a^3 x^2+24 a^2 x y(x)^4+16 a^2 x y(x)^2-2 a y(x)^6-2 a y(x)^4-2 a-y(x)} \]
✓ Mathematica : cpu = 0.353741 (sec), leaf count = 131
DSolve[Derivative[1][y][x] == (-2*a)/(-2*a - 32*a^3*x^2 + 128*a^4*x^3 - y[x] + 16*a^2*x*y[x]^2 - 96*a^3*x^2*y[x]^2 - 2*a*y[x]^4 + 24*a^2*x*y[x]^4 - 2*a*y[x]^6),y[x],x]
\[\text {Solve}\left [\frac {\text {RootSum}\left [-64 \text {$\#$1}^3 a^3+48 \text {$\#$1}^2 a^2 y(x)^2+16 \text {$\#$1}^2 a^2-12 \text {$\#$1} a y(x)^4-8 \text {$\#$1} a y(x)^2+y(x)^6+y(x)^4+1\& ,\frac {\log (x-\text {$\#$1})}{48 \text {$\#$1}^2 a^2-24 \text {$\#$1} a y(x)^2-8 \text {$\#$1} a+3 y(x)^4+2 y(x)^2}\& \right ]}{8 a^2}+\frac {y(x)}{2 a}=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.124 (sec), leaf count = 41
dsolve(diff(y(x),x) = -2*a/(-y(x)-2*a-2*a*y(x)^4+16*a^2*x*y(x)^2-32*a^3*x^2-2*a*y(x)^6+24*y(x)^4*a^2*x-96*y(x)^2*a^3*x^2+128*a^4*x^3),y(x))
\[\frac {y \left (x \right )}{2 a}+\frac {\int _{}^{y \left (x \right )^{2}-4 a x}\frac {1}{\textit {\_a}^{3}+\textit {\_a}^{2}+1}d \textit {\_a}}{8 a^{2}}-c_{1} = 0\]