2.878   ODE No. 878

\[ y'(x)=\frac {-64 a^3 x^3+48 a^2 x^2 y(x)^2+16 a^2 x^2-12 a x y(x)^4-8 a x y(x)^2+y(x)^6+y(x)^4+1}{y(x)} \]

Mathematica : cpu = 0.272907 (sec), leaf count = 130

DSolve[Derivative[1][y][x] == (1 + 16*a^2*x^2 - 64*a^3*x^3 - 8*a*x*y[x]^2 + 48*a^2*x^2*y[x]^2 + y[x]^4 - 12*a*x*y[x]^4 + y[x]^6)/y[x],y[x],x]
 
\[\text {Solve}\left [2 a \left (x-\frac {1}{2} \text {RootSum}\left [64 \text {$\#$1}^3 a^3-48 \text {$\#$1}^2 a^2 y(x)^2-16 \text {$\#$1}^2 a^2+12 \text {$\#$1} a y(x)^4+8 \text {$\#$1} a y(x)^2+2 a-y(x)^6-y(x)^4-1\& ,\frac {\log (x-\text {$\#$1})}{48 \text {$\#$1}^2 a^2-24 \text {$\#$1} a y(x)^2-8 \text {$\#$1} a+3 y(x)^4+2 y(x)^2}\& \right ]\right )=c_1,y(x)\right ]\]

Maple : cpu = 233.352 (sec), leaf count = 73

dsolve(diff(y(x),x) = (1+y(x)^4-8*a*x*y(x)^2+16*a^2*x^2+y(x)^6-12*y(x)^4*a*x+48*y(x)^2*a^2*x^2-64*a^3*x^3)/y(x),y(x))
 
\[-\left (\int _{\textit {\_b}}^{y \left (x \right )}\frac {\textit {\_a}}{\textit {\_a}^{6}-12 \textit {\_a}^{4} a x +48 \textit {\_a}^{2} a^{2} x^{2}-64 a^{3} x^{3}+\textit {\_a}^{4}-8 \textit {\_a}^{2} a x +16 a^{2} x^{2}-2 a +1}d \textit {\_a} \right )+x -c_{1} = 0\]