2.87   ODE No. 87

\[ y'(x)-\frac {c x^a y(x)^b+a y(x) f\left (x^c y(x)\right )}{b x f\left (x^c y(x)\right )-x^a y(x)^b}=0 \]

Mathematica : cpu = 4.12571 (sec), leaf count = 0

DSolve[-((a*f[x^c*y[x]]*y[x] + c*x^a*y[x]^b)/(b*x*f[x^c*y[x]] - x^a*y[x]^b)) + Derivative[1][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-((a*f[x^c*y[x]]*y[x] + c*x^a*y[x]^b)/(b*x*f[x^c*y[x]] - x^a*y[x]^b)) + Derivative[1][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(y(x),x)-(y(x)*a*f(x^c*y(x))+c*x^a*y(x)^b)/(x*b*f(x^c*y(x))-x^a*y(x)^b) = 0,y(x))
 

, could not solve

dsolve(diff(y(x),x)-(y(x)*a*f(x^c*y(x))+c*x^a*y(x)^b)/(x*b*f(x^c*y(x))-x^a*y(x)^b) = 0,y(x))