2.868 ODE No. 868
\[ y'(x)=-x^6+3 x^4 y(x)+x^4-3 x^2 y(x)^2-2 x^2 y(x)+y(x)^3+y(x)^2+2 x+1 \]
✓ Mathematica : cpu = 0.128583 (sec), leaf count = 79
DSolve[Derivative[1][y][x] == 1 + 2*x + x^4 - x^6 - 2*x^2*y[x] + 3*x^4*y[x] + y[x]^2 - 3*x^2*y[x]^2 + y[x]^3,y[x],x]
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {-3 x^2+3 y(x)+1}{\sqrt [3]{29}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {1}{9} 29^{2/3} x+c_1,y(x)\right ]\]
✓ Maple : cpu = 0.077 (sec), leaf count = 28
dsolve(diff(y(x),x) = 2*x+1+y(x)^2-2*x^2*y(x)+x^4+y(x)^3-3*y(x)^2*x^2+3*y(x)*x^4-x^6,y(x))
\[y \left (x \right ) = x^{2}+\operatorname {RootOf}\left (-x +\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_a}^{3}+\textit {\_a}^{2}+1}d \textit {\_a} +c_{1} \right )\]