2.863 ODE No. 863
\[ y'(x)=\frac {x \sqrt {x^2+y(x)^2}+x^4 \sqrt {x^2+y(x)^2}+x^3 \sqrt {x^2+y(x)^2}+y(x)}{x} \]
✓ Mathematica : cpu = 0.161071 (sec), leaf count = 126
DSolve[Derivative[1][y][x] == (y[x] + x*Sqrt[x^2 + y[x]^2] + x^3*Sqrt[x^2 + y[x]^2] + x^4*Sqrt[x^2 + y[x]^2])/x,y[x],x]
\[\left \{\left \{y(x)\to -\frac {x \tanh \left (\frac {1}{12} \left (3 x^4+4 x^3+12 x+12 c_1\right )\right )}{\sqrt {1-\tanh ^2\left (\frac {1}{12} \left (3 x^4+4 x^3+12 x+12 c_1\right )\right )}}\right \},\left \{y(x)\to \frac {x \tanh \left (\frac {1}{12} \left (3 x^4+4 x^3+12 x+12 c_1\right )\right )}{\sqrt {1-\tanh ^2\left (\frac {1}{12} \left (3 x^4+4 x^3+12 x+12 c_1\right )\right )}}\right \}\right \}\]
✓ Maple : cpu = 13.511 (sec), leaf count = 38
dsolve(diff(y(x),x) = (y(x)+x*(y(x)^2+x^2)^(1/2)+x^3*(y(x)^2+x^2)^(1/2)+x^4*(y(x)^2+x^2)^(1/2))/x,y(x))
\[\ln \left (y \left (x \right )+\sqrt {y \left (x \right )^{2}+x^{2}}\right )-\frac {x^{4}}{4}-\frac {x^{3}}{3}-x -\ln \left (x \right )-c_{1} = 0\]