2.861   ODE No. 861

\[ y'(x)=\frac {e^{-1/x} \left (\text {$\_$F1}\left (e^{\frac {1}{x}} y(x)\right )+\frac {e^{\frac {1}{x}} y(x)}{x}\right )}{x} \]

Mathematica : cpu = 1.02241 (sec), leaf count = 158

DSolve[Derivative[1][y][x] == ((E^x^(-1)*y[x])/x + _F1[E^x^(-1)*y[x]])/(E^x^(-1)*x),y[x],x]
 
\[\text {Solve}\left [\int _1^{y(x)}-\frac {\text {$\_$F1}\left (e^{\frac {1}{x}} K[2]\right ) \int _1^x\left (\frac {e^{\frac {1}{K[1]}}}{K[1]^2 \text {$\_$F1}\left (e^{\frac {1}{K[1]}} K[2]\right )}-\frac {e^{\frac {2}{K[1]}} K[2] \text {$\_$F1}'\left (e^{\frac {1}{K[1]}} K[2]\right )}{K[1]^2 \left (\text {$\_$F1}\left (e^{\frac {1}{K[1]}} K[2]\right )\right ){}^2}\right )dK[1]+e^{\frac {1}{x}}}{\text {$\_$F1}\left (e^{\frac {1}{x}} K[2]\right )}dK[2]+\int _1^x\left (\frac {e^{\frac {1}{K[1]}} y(x)}{K[1]^2 \text {$\_$F1}\left (e^{\frac {1}{K[1]}} y(x)\right )}+\frac {1}{K[1]}\right )dK[1]=c_1,y(x)\right ]\]

Maple : cpu = 0.142 (sec), leaf count = 26

dsolve(diff(y(x),x) = -(-1/x*y(x)/exp(-1/x)-_F1(y(x)/exp(-1/x)))*exp(-1/x)/x,y(x))
 
\[y \left (x \right ) = \operatorname {RootOf}\left (-\ln \left (x \right )+\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_F1} \left (\textit {\_a} \right )}d \textit {\_a} +c_{1} \right ) {\mathrm e}^{-\frac {1}{x}}\]