2.848   ODE No. 848

\[ y'(x)=\text {$\_$F1}(y(x)-\log (\sinh (x)))+\coth (x) \]

Mathematica : cpu = 0.146556 (sec), leaf count = 157

DSolve[Derivative[1][y][x] == Coth[x] + _F1[-Log[Sinh[x]] + y[x]],y[x],x]
 
\[\text {Solve}\left [\int _1^{y(x)}-\frac {\text {$\_$F1}(K[2]-\log (\sinh (x))) \int _1^x\left (\frac {(\coth (K[1])+\text {$\_$F1}(K[2]-\log (\sinh (K[1])))) \text {$\_$F1}'(K[2]-\log (\sinh (K[1])))}{(\text {$\_$F1}(K[2]-\log (\sinh (K[1])))){}^2}-\frac {\text {$\_$F1}'(K[2]-\log (\sinh (K[1])))}{\text {$\_$F1}(K[2]-\log (\sinh (K[1])))}\right )dK[1]-1}{\text {$\_$F1}(K[2]-\log (\sinh (x)))}dK[2]+\int _1^x-\frac {\coth (K[1])+\text {$\_$F1}(y(x)-\log (\sinh (K[1])))}{\text {$\_$F1}(y(x)-\log (\sinh (K[1])))}dK[1]=c_1,y(x)\right ]\]

Maple : cpu = 0.6 (sec), leaf count = 22

dsolve(diff(y(x),x) = 1/sinh(x)*cosh(x)+_F1(y(x)-ln(sinh(x))),y(x))
 
\[y \left (x \right ) = \ln \left (\sinh \left (x \right )\right )+\operatorname {RootOf}\left (x -\left (\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_F1} \left (\textit {\_a} \right )}d \textit {\_a} \right )+c_{1} \right )\]