2.836   ODE No. 836

\[ y'(x)=\frac {(x-y(x)) y(x) (y(x)+1)}{x (x y(x)-y(x)+x)} \]

Mathematica : cpu = 8.83189 (sec), leaf count = 379

DSolve[Derivative[1][y][x] == ((x - y[x])*y[x]*(1 + y[x]))/(x*(x - y[x] + x*y[x])),y[x],x]
 
\[\text {Solve}\left [\frac {1}{9} 2^{2/3} \left (\frac {\left (1-\frac {(x-1)^2 \left (\frac {x^6}{(x-1)^3}\right )^{2/3} ((x+2) y(x)+x)}{x^4 ((x-1) y(x)+x)}\right ) \left (\frac {\left (\frac {x^6}{(x-1)^3}\right )^{2/3} (x-1)^2 ((x+2) y(x)+x)}{x^4 ((x-1) y(x)+x)}+2\right ) \left (\left (1-\frac {(x-1)^2 \left (\frac {x^6}{(x-1)^3}\right )^{2/3} ((x+2) y(x)+x)}{x^4 ((x-1) y(x)+x)}\right ) \log \left (2^{2/3} \left (1-\frac {(x-1)^2 \left (\frac {x^6}{(x-1)^3}\right )^{2/3} ((x+2) y(x)+x)}{x^4 ((x-1) y(x)+x)}\right )\right )+\left (\frac {(x-1)^2 \left (\frac {x^6}{(x-1)^3}\right )^{2/3} ((x+2) y(x)+x)}{x^4 ((x-1) y(x)+x)}-1\right ) \log \left (2^{2/3} \left (\frac {\left (\frac {x^6}{(x-1)^3}\right )^{2/3} (x-1)^2 ((x+2) y(x)+x)}{x^4 ((x-1) y(x)+x)}+2\right )\right )-3\right )}{\frac {3 (x-1)^2 \left (\frac {x^6}{(x-1)^3}\right )^{2/3} ((x+2) y(x)+x)}{x^4 ((x-1) y(x)+x)}-\frac {((x+2) y(x)+x)^3}{((x-1) y(x)+x)^3}-2}+\frac {\left (\frac {x^6}{(x-1)^3}\right )^{2/3} (x-1)^2}{x^3}\right )=c_1,y(x)\right ]\]

Maple : cpu = 0.2 (sec), leaf count = 73

dsolve(diff(y(x),x) = y(x)*(x-y(x))*(1+y(x))/x/(x*y(x)+x-y(x)),y(x))
 
\[y \left (x \right ) = -\frac {x \,{\mathrm e}^{\operatorname {RootOf}\left (-\ln \left (\frac {{\mathrm e}^{\textit {\_Z}}}{2}+\frac {9}{2}\right ) {\mathrm e}^{\textit {\_Z}}+3 c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{\textit {\_Z}} x +9\right )}}{-9+\left (x -1\right ) {\mathrm e}^{\operatorname {RootOf}\left (-\ln \left (\frac {{\mathrm e}^{\textit {\_Z}}}{2}+\frac {9}{2}\right ) {\mathrm e}^{\textit {\_Z}}+3 c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{\textit {\_Z}} x +9\right )}}\]