2.820 ODE No. 820
\[ y'(x)=\frac {\csc (y(x)) \left (\frac {1}{2} x^2 \log (x) \cos (2 y(x))+\frac {1}{2} x^2 \log (x)-\cos (y(x))\right )}{x \log (x)} \]
✓ Mathematica : cpu = 0.359492 (sec), leaf count = 63
DSolve[Derivative[1][y][x] == (Csc[y[x]]*(-Cos[y[x]] + (x^2*Log[x])/2 + (x^2*Cos[2*y[x]]*Log[x])/2))/(x*Log[x]),y[x],x]
\[\left \{\left \{y(x)\to -\sec ^{-1}\left (\frac {-x^2+2 x^2 \log (x)-4 c_1}{4 \log (x)}\right )\right \},\left \{y(x)\to \sec ^{-1}\left (\frac {-x^2+2 x^2 \log (x)-4 c_1}{4 \log (x)}\right )\right \}\right \}\]
✓ Maple : cpu = 0.837 (sec), leaf count = 27
dsolve(diff(y(x),x) = 1/2*(-2*cos(y(x))+x^2*cos(2*y(x))*ln(x)+x^2*ln(x))/sin(y(x))/ln(x)/x,y(x))
\[y \left (x \right ) = \operatorname {arcsec}\left (\frac {2 x^{2} \ln \left (x \right )-x^{2}+4 c_{1}}{4 \ln \left (x \right )}\right )\]