2.811 ODE No. 811
\[ y'(x)=\frac {x^4+x^3 e^{y(x)}+x y(x)+e^{y(x)} y(x)-x \log \left (e^{y(x)}+x\right )-e^{y(x)} \log \left (e^{y(x)}+x\right )+x}{x^2} \]
✓ Mathematica : cpu = 0.787542 (sec), leaf count = 33
DSolve[Derivative[1][y][x] == (x + E^y[x]*x^3 + x^4 - E^y[x]*Log[E^y[x] + x] - x*Log[E^y[x] + x] + E^y[x]*y[x] + x*y[x])/x^2,y[x],x]
\[\left \{\left \{y(x)\to -\log \left (-\frac {1}{x}+\frac {e^{-\frac {x^3}{2}-c_1 x}}{x}\right )\right \}\right \}\]
✓ Maple : cpu = 1.196 (sec), leaf count = 32
dsolve(diff(y(x),x) = (x^3*exp(y(x))+x^4+exp(y(x))*y(x)-exp(y(x))*ln(exp(y(x))+x)+x*y(x)-ln(exp(y(x))+x)*x+x)/x^2,y(x))
\[y \left (x \right ) = \frac {x^{3}}{2}+x c_{1} +\ln \left (-\frac {x}{-1+{\mathrm e}^{\frac {x^{3}}{2}} {\mathrm e}^{x c_{1}}}\right )\]