2.789   ODE No. 789

\[ y'(x)=\frac {x^2 \coth (x+1)+2 x y(x) \coth (x+1)+y(x)^2 \coth (x+1)-\log (x-1)+\coth (x+1)}{\log (x-1)} \]

Mathematica : cpu = 44.1944 (sec), leaf count = 120

DSolve[Derivative[1][y][x] == (Coth[1 + x] + x^2*Coth[1 + x] - Log[-1 + x] + 2*x*Coth[1 + x]*y[x] + Coth[1 + x]*y[x]^2)/Log[-1 + x],y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {e^2 x \sinh (x)-x \sinh (x)+e^2 x \cosh (x)+x \cosh (x)}{e^2 \sinh (x)-\sinh (x)+e^2 \cosh (x)+\cosh (x)}+\tan \left (\int _1^x\frac {e^2 \cosh (K[5])+\cosh (K[5])+e^2 \sinh (K[5])-\sinh (K[5])}{\log (K[5]-1) \left (e^2 \cosh (K[5])-\cosh (K[5])+e^2 \sinh (K[5])+\sinh (K[5])\right )}dK[5]+c_1\right )\right \}\right \}\]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(y(x),x) = -(ln(x-1)-coth(1+x)*x^2-2*coth(1+x)*x*y(x)-coth(1+x)-coth(1+x)*y(x)^2)/ln(x-1),y(x))
 

, exception

time expired