2.784 ODE No. 784
\[ y'(x)=\text {csch}(x) \left (x^2 \log (x)+2 x y(x) \log (x)+y(x)^2 \log (x)+\log (x)-\sinh (x)\right ) \]
✓ Mathematica : cpu = 7.25811 (sec), leaf count = 27
DSolve[Derivative[1][y][x] == Csch[x]*(Log[x] + x^2*Log[x] - Sinh[x] + 2*x*Log[x]*y[x] + Log[x]*y[x]^2),y[x],x]
\[\left \{\left \{y(x)\to -x+\tan \left (\int _1^x\text {csch}(K[5]) \log (K[5])dK[5]+c_1\right )\right \}\right \}\]
✓ Maple : cpu = 14.056 (sec), leaf count = 24
dsolve(diff(y(x),x) = (-sinh(x)+x^2*ln(x)+2*y(x)*ln(x)*x+ln(x)+y(x)^2*ln(x))/sinh(x),y(x))
\[y \left (x \right ) = -x -\tan \left (c_{1} -\left (\int \frac {\ln \left (x \right )}{\sinh \left (x \right )}d x \right )\right )\]