2.772   ODE No. 772

\[ y'(x)=\frac {y(x) \log (y(x)) (x \log (y(x))+x+1)}{x (x+1)} \]

Mathematica : cpu = 0.117958 (sec), leaf count = 21

DSolve[Derivative[1][y][x] == (Log[y[x]]*(1 + x + x*Log[y[x]])*y[x])/(x*(1 + x)),y[x],x]
 
\[\left \{\left \{y(x)\to e^{\frac {x}{-x+\log (x+1)+c_1}}\right \}\right \}\]

Maple : cpu = 0.147 (sec), leaf count = 18

dsolve(diff(y(x),x) = (x+1+ln(y(x))*x)*ln(y(x))*y(x)/x/(1+x),y(x))
 
\[y \left (x \right ) = {\mathrm e}^{\frac {x}{\ln \left (1+x \right )+c_{1} -x}}\]