2.770 ODE No. 770
\[ y'(x)=\frac {2 y(x)^6}{32 x^2 y(x)^4+y(x)^3+16 x y(x)^2+2} \]
✓ Mathematica : cpu = 0.161656 (sec), leaf count = 705
DSolve[Derivative[1][y][x] == (2*y[x]^6)/(2 + 16*x*y[x]^2 + y[x]^3 + 32*x^2*y[x]^4),y[x],x]
\[\left \{\left \{y(x)\to \frac {\sqrt [3]{8192 x^3+18432 c_1{}^2 x^2+\sqrt {4 \left (-256 x^2+192 c_1{}^2 x-12 c_1\right ){}^3+\left (8192 x^3+18432 c_1{}^2 x^2-2880 c_1 x+108\right ){}^2}-2880 c_1 x+108}}{3 \sqrt [3]{2} (1-16 c_1 x)}-\frac {\sqrt [3]{2} \left (-256 x^2+192 c_1{}^2 x-12 c_1\right )}{3 (1-16 c_1 x) \sqrt [3]{8192 x^3+18432 c_1{}^2 x^2+\sqrt {4 \left (-256 x^2+192 c_1{}^2 x-12 c_1\right ){}^3+\left (8192 x^3+18432 c_1{}^2 x^2-2880 c_1 x+108\right ){}^2}-2880 c_1 x+108}}+\frac {16 x}{3 (1-16 c_1 x)}\right \},\left \{y(x)\to -\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{8192 x^3+18432 c_1{}^2 x^2+\sqrt {4 \left (-256 x^2+192 c_1{}^2 x-12 c_1\right ){}^3+\left (8192 x^3+18432 c_1{}^2 x^2-2880 c_1 x+108\right ){}^2}-2880 c_1 x+108}}{6 \sqrt [3]{2} (1-16 c_1 x)}+\frac {\left (1+i \sqrt {3}\right ) \left (-256 x^2+192 c_1{}^2 x-12 c_1\right )}{3\ 2^{2/3} (1-16 c_1 x) \sqrt [3]{8192 x^3+18432 c_1{}^2 x^2+\sqrt {4 \left (-256 x^2+192 c_1{}^2 x-12 c_1\right ){}^3+\left (8192 x^3+18432 c_1{}^2 x^2-2880 c_1 x+108\right ){}^2}-2880 c_1 x+108}}+\frac {16 x}{3 (1-16 c_1 x)}\right \},\left \{y(x)\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{8192 x^3+18432 c_1{}^2 x^2+\sqrt {4 \left (-256 x^2+192 c_1{}^2 x-12 c_1\right ){}^3+\left (8192 x^3+18432 c_1{}^2 x^2-2880 c_1 x+108\right ){}^2}-2880 c_1 x+108}}{6 \sqrt [3]{2} (1-16 c_1 x)}+\frac {\left (1-i \sqrt {3}\right ) \left (-256 x^2+192 c_1{}^2 x-12 c_1\right )}{3\ 2^{2/3} (1-16 c_1 x) \sqrt [3]{8192 x^3+18432 c_1{}^2 x^2+\sqrt {4 \left (-256 x^2+192 c_1{}^2 x-12 c_1\right ){}^3+\left (8192 x^3+18432 c_1{}^2 x^2-2880 c_1 x+108\right ){}^2}-2880 c_1 x+108}}+\frac {16 x}{3 (1-16 c_1 x)}\right \}\right \}\]
✓ Maple : cpu = 0.148 (sec), leaf count = 1096
dsolve(diff(y(x),x) = 2*y(x)^6/(y(x)^3+2+16*x*y(x)^2+32*y(x)^4*x^2),y(x))
\[y \left (x \right ) = \frac {\left (4096 c_{1}^{3} x^{3}+6 \sqrt {3}\, \sqrt {4096 c_{1}^{4} x^{3}+27 c_{1}^{4}+576 c_{1}^{3} x +2048 x^{2} c_{1}^{2}+16 c_{1} +256 x}\, c_{1} +96 \sqrt {3}\, \sqrt {4096 c_{1}^{4} x^{3}+27 c_{1}^{4}+576 c_{1}^{3} x +2048 x^{2} c_{1}^{2}+16 c_{1} +256 x}\, x +54 c_{1}^{3}+1440 c_{1}^{2} x +9216 x^{2} c_{1} \right )^{{1}/{3}}}{3 c_{1} +48 x}+\frac {\frac {256}{3} x^{2} c_{1}^{2}-4 c_{1} -64 x}{\left (c_{1} +16 x \right ) \left (4096 c_{1}^{3} x^{3}+6 \sqrt {3}\, \sqrt {4096 c_{1}^{4} x^{3}+27 c_{1}^{4}+576 c_{1}^{3} x +2048 x^{2} c_{1}^{2}+16 c_{1} +256 x}\, c_{1} +96 \sqrt {3}\, \sqrt {4096 c_{1}^{4} x^{3}+27 c_{1}^{4}+576 c_{1}^{3} x +2048 x^{2} c_{1}^{2}+16 c_{1} +256 x}\, x +54 c_{1}^{3}+1440 c_{1}^{2} x +9216 x^{2} c_{1} \right )^{{1}/{3}}}+\frac {16 x c_{1}}{3 c_{1} +48 x}\]