2.764   ODE No. 764

\[ y'(x)=\frac {y(x) \left (x^4-x \log (y(x))-\log (y(x))\right )}{x (x+1)} \]

Mathematica : cpu = 0.13275 (sec), leaf count = 50

DSolve[Derivative[1][y][x] == ((x^4 - Log[y[x]] - x*Log[y[x]])*y[x])/(x*(1 + x)),y[x],x]
 
\[\left \{\left \{y(x)\to (x+1)^{\frac {1}{x}} e^{\frac {x^3}{4}-\frac {x^2}{3}+\frac {x}{2}-\frac {25}{12 x}-\frac {c_1}{x}-1}\right \}\right \}\]

Maple : cpu = 0.162 (sec), leaf count = 36

dsolve(diff(y(x),x) = (-ln(y(x))*x-ln(y(x))+x^4)*y(x)/x/(1+x),y(x))
 
\[y \left (x \right ) = {\mathrm e}^{\frac {x^{3}}{4}} {\mathrm e}^{-\frac {x^{2}}{3}} {\mathrm e}^{\frac {x}{2}} \left (1+x \right )^{\frac {1}{x}} {\mathrm e}^{\frac {c_{1}}{x}} {\mathrm e}^{-1}\]