2.758 ODE No. 758
\[ y'(x)=\frac {y(x) \left (x^3 y(x)+2 x+2\right )}{(x+1) (\log (y(x))+2 x-1)} \]
✓ Mathematica : cpu = 0.583564 (sec), leaf count = 459
DSolve[Derivative[1][y][x] == (y[x]*(2 + 2*x + x^3*y[x]))/((1 + x)*(-1 + 2*x + Log[y[x]])),y[x],x]
\[\left \{\left \{y(x)\to \frac {6 W\left (-\frac {1}{6} \sqrt [6]{e^{-12 x} \left (2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1\right ){}^6}\right )}{2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1}\right \},\left \{y(x)\to \frac {6 W\left (\frac {1}{6} \sqrt [6]{e^{-12 x} \left (2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1\right ){}^6}\right )}{2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1}\right \},\left \{y(x)\to \frac {6 W\left (-\frac {1}{6} \sqrt [3]{-1} \sqrt [6]{e^{-12 x} \left (2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1\right ){}^6}\right )}{2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1}\right \},\left \{y(x)\to \frac {6 W\left (\frac {1}{6} \sqrt [3]{-1} \sqrt [6]{e^{-12 x} \left (2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1\right ){}^6}\right )}{2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1}\right \},\left \{y(x)\to \frac {6 W\left (-\frac {1}{6} (-1)^{2/3} \sqrt [6]{e^{-12 x} \left (2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1\right ){}^6}\right )}{2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1}\right \},\left \{y(x)\to \frac {6 W\left (\frac {1}{6} (-1)^{2/3} \sqrt [6]{e^{-12 x} \left (2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1\right ){}^6}\right )}{2 x^3-3 x^2+6 x-6 \log (x+1)+6 c_1}\right \}\right \}\]
✓ Maple : cpu = 0.198 (sec), leaf count = 41
dsolve(diff(y(x),x) = (2*x+2+x^3*y(x))/(ln(y(x))+2*x-1)*y(x)/(1+x),y(x))
\[y \left (x \right ) = {\mathrm e}^{-\operatorname {LambertW}\left (-\frac {\left (-2 x^{3}+3 x^{2}+6 \ln \left (1+x \right )+6 c_{1} -6 x \right ) {\mathrm e}^{-2 x}}{6}\right )-2 x}\]