2.756   ODE No. 756

\[ y'(x)=\frac {x^6+2 x^3 y(x)+x^2 y(x)^2+y(x)^3}{x^4} \]

Mathematica : cpu = 1.12819 (sec), leaf count = 95

DSolve[Derivative[1][y][x] == (x^6 + 2*x^3*y[x] + x^2*y[x]^2 + y[x]^3)/x^4,y[x],x]
 
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {\frac {3 y(x)}{x^4}+\frac {1}{x^2}}{\sqrt [3]{29} \sqrt [3]{\frac {1}{x^6}}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {1}{9} 29^{2/3} \left (\frac {1}{x^6}\right )^{2/3} x^5+c_1,y(x)\right ]\]

Maple : cpu = 0.036 (sec), leaf count = 37

dsolve(diff(y(x),x) = (2*x^3*y(x)+x^6+y(x)^2*x^2+y(x)^3)/x^4,y(x))
 
\[y \left (x \right ) = \frac {\left (-3+29 \operatorname {RootOf}\left (-81 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+x +3 c_{1} \right )\right ) x^{2}}{9}\]