2.754   ODE No. 754

\[ y'(x)=\frac {x^3+x y(x)^2+x y(x)+y(x)^3}{x^2} \]

Mathematica : cpu = 0.0873083 (sec), leaf count = 47

DSolve[Derivative[1][y][x] == (x^3 + x*y[x] + x*y[x]^2 + y[x]^3)/x^2,y[x],x]
 
\[\text {Solve}\left [\text {RootSum}\left [\text {$\#$1}^3+\text {$\#$1}^2+1\& ,\frac {\log \left (\frac {y(x)}{x}-\text {$\#$1}\right )}{3 \text {$\#$1}^2+2 \text {$\#$1}}\& \right ]=x+c_1,y(x)\right ]\]

Maple : cpu = 0.016 (sec), leaf count = 26

dsolve(diff(y(x),x) = (x*y(x)+x^3+x*y(x)^2+y(x)^3)/x^2,y(x))
 
\[y \left (x \right ) = \operatorname {RootOf}\left (-\left (\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_a}^{3}+\textit {\_a}^{2}+1}d \textit {\_a} \right )+x +c_{1} \right ) x\]