2.750 ODE No. 750
\[ y'(x)=\frac {y(x) \left (x^2+3 y(x)^2\right )}{x \left (6 y(x)^2+x\right )} \]
✓ Mathematica : cpu = 0.191271 (sec), leaf count = 72
DSolve[Derivative[1][y][x] == (y[x]*(x^2 + 3*y[x]^2))/(x*(x + 6*y[x]^2)),y[x],x]
\[\left \{\left \{y(x)\to -\frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{2 x+2 c_1}}{x}\right )}}{\sqrt {6}}\right \},\left \{y(x)\to \frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{2 x+2 c_1}}{x}\right )}}{\sqrt {6}}\right \}\right \}\]
✓ Maple : cpu = 0.277 (sec), leaf count = 49
dsolve(diff(y(x),x) = 1/(6*y(x)^2+x)*(x^2+3*y(x)^2)*y(x)/x,y(x))
\[\frac {1}{\frac {1}{y \left (x \right )^{2}}+\frac {6}{x}} = \frac {\left ({\mathrm e}^{\operatorname {RootOf}\left (-{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {\left ({\mathrm e}^{\textit {\_Z}}+9\right ) x}{2}\right )+3 c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+2 x \,{\mathrm e}^{\textit {\_Z}}+9\right )}+9\right ) x}{54}\]