2.737 ODE No. 737
\[ y'(x)=\frac {x \left (2 x^3-2 x y(x)+x-1\right )}{x^2-y(x)} \]
✓ Mathematica : cpu = 0.02862 (sec), leaf count = 36
DSolve[Derivative[1][y][x] == (x*(-1 + x + 2*x^3 - 2*x*y[x]))/(x^2 - y[x]),y[x],x]
\[\left \{\left \{y(x)\to x^2+\frac {1}{2} \left (1+W\left (-e^{\frac {4 x^3}{3}-2 x^2-1+c_1}\right )\right )\right \}\right \}\]
✓ Maple : cpu = 0.201 (sec), leaf count = 29
dsolve(diff(y(x),x) = 1/(x^2-y(x))*x*(-1+x-2*x*y(x)+2*x^3),y(x))
\[y \left (x \right ) = x^{2}+\frac {\operatorname {LambertW}\left (-2 \,{\mathrm e}^{\frac {4 x^{3}}{3}} {\mathrm e}^{-2 x^{2}} c_{1} {\mathrm e}^{-1}\right )}{2}+\frac {1}{2}\]