2.734   ODE No. 734

\[ y'(x)=\frac {y(x) \left (x^3-x \log (y(x))-\log (y(x))\right )}{x+1} \]

Mathematica : cpu = 0.187678 (sec), leaf count = 37

DSolve[Derivative[1][y][x] == ((x^3 - Log[y[x]] - x*Log[y[x]])*y[x])/(1 + x),y[x],x]
 
\[\left \{\left \{y(x)\to \exp \left (-e^{-x-1} \text {Ei}(x+1)+x^2-3 x-c_1 e^{-x}+4\right )\right \}\right \}\]

Maple : cpu = 0.286 (sec), leaf count = 39

dsolve(diff(y(x),x) = (-ln(y(x))*x-ln(y(x))+x^3)*y(x)/(1+x),y(x))
 
\[y \left (x \right ) = {\mathrm e}^{x^{2}} {\mathrm e}^{-3 x} {\mathrm e}^{4} {\mathrm e}^{{\mathrm e}^{-x} c_{1}} {\mathrm e}^{{\mathrm e}^{-1} \operatorname {Ei}_{1}\left (-1-x \right ) {\mathrm e}^{-x}}\]