2.727 ODE No. 727
\[ y'(x)=\frac {y(x) (y(x)+2 x+2)}{(x+1) (\log (y(x))+2 x-1)} \]
✓ Mathematica : cpu = 0.280667 (sec), leaf count = 29
DSolve[Derivative[1][y][x] == (y[x]*(2 + 2*x + y[x]))/((1 + x)*(-1 + 2*x + Log[y[x]])),y[x],x]
\[\left \{\left \{y(x)\to \frac {W\left (e^{-2 x} (\log (x+1)+c_1)\right )}{\log (x+1)+c_1}\right \}\right \}\]
✓ Maple : cpu = 0.162 (sec), leaf count = 25
dsolve(diff(y(x),x) = (2*x+2+y(x))/(ln(y(x))+2*x-1)*y(x)/(1+x),y(x))
\[y \left (x \right ) = {\mathrm e}^{-\operatorname {LambertW}\left (\left (\ln \left (1+x \right )-c_{1} \right ) {\mathrm e}^{-2 x}\right )-2 x}\]