2.725   ODE No. 725

\[ y'(x)=\frac {x^2 \log (2 x)+2 x y(x) \log (2 x)+y(x)^2 \log (2 x)-\log (x)+\log (2 x)}{\log (x)} \]

Mathematica : cpu = 0.186239 (sec), leaf count = 19

DSolve[Derivative[1][y][x] == (-Log[x] + Log[2*x] + x^2*Log[2*x] + 2*x*Log[2*x]*y[x] + Log[2*x]*y[x]^2)/Log[x],y[x],x]
 
\[\{\{y(x)\to -x+\tan (\log (2) \text {li}(x)+x+c_1)\}\}\]

Maple : cpu = 1.039 (sec), leaf count = 25

dsolve(diff(y(x),x) = (-ln(x)+2*ln(2*x)*x*y(x)+ln(2*x)+ln(2*x)*y(x)^2+ln(2*x)*x^2)/ln(x),y(x))
 
\[y \left (x \right ) = -x -\tan \left (c_{1} +\ln \left (2\right ) \operatorname {Ei}_{1}\left (-\ln \left (x \right )\right )-x \right )\]