2.705 ODE No. 705
\[ y'(x)=\frac {y(x) \left (x^4+x^3+\log (y(x))+x\right )}{x} \]
✓ Mathematica : cpu = 0.114718 (sec), leaf count = 30
DSolve[Derivative[1][y][x] == ((x + x^3 + x^4 + Log[y[x]])*y[x])/x,y[x],x]
\[\left \{\left \{y(x)\to x^x e^{\frac {x^4}{3}+\frac {x^3}{2}+c_1 x}\right \}\right \}\]
✓ Maple : cpu = 0.111 (sec), leaf count = 24
dsolve(diff(y(x),x) = (ln(y(x))+x+x^3+x^4)*y(x)/x,y(x))
\[y \left (x \right ) = {\mathrm e}^{\frac {x^{4}}{3}} {\mathrm e}^{\frac {x^{3}}{2}} {\mathrm e}^{c_{1} x} x^{x}\]