2.700 ODE No. 700
\[ y'(x)=\frac {1}{x y(x) \left (x y(x)^2+x+1\right )} \]
✓ Mathematica : cpu = 0.159574 (sec), leaf count = 76
DSolve[Derivative[1][y][x] == 1/(x*y[x]*(1 + x + x*y[x]^2)),y[x],x]
\[\left \{\left \{y(x)\to -\frac {\sqrt {2 x W\left (c_1 e^{\frac {1}{2 x}-\frac {1}{2}}\right )+x-1}}{\sqrt {x}}\right \},\left \{y(x)\to \frac {\sqrt {2 x W\left (c_1 e^{\frac {1}{2 x}-\frac {1}{2}}\right )+x-1}}{\sqrt {x}}\right \}\right \}\]
✓ Maple : cpu = 0.075 (sec), leaf count = 62
dsolve(diff(y(x),x) = 1/x/(x*y(x)^2+1+x)/y(x),y(x))
\[y \left (x \right ) = \frac {\sqrt {x \left (2 \operatorname {LambertW}\left (\frac {c_{1} {\mathrm e}^{-\frac {x -1}{2 x}}}{2}\right ) x +x -1\right )}}{x}\]